
Department of Computer Science

Data Structures
BTree Analysis

October 6, 2023
CS 225

Brad Solomon & G Carl Evans

CS 225 Extra Credit
POTDs: 40 points

Early MP submissions: 40 points

Extra credit projects: 40 points

An extra (13th) lab: 10 points

Above 70% participation in Informal Early Feedback: 5 points

Above ??% participation in ICES Evaluations: 5 points

Informal Early Feedback Released!
A larger anonymous survey designed to give feedback to staf

Collective extra credit opportunity!

Particularly interested in ways to improve lecture and labs.

MP Mosaics Quick Tips
1. Pay close attention to your recursion and default point constructor

2. Individual mosaic tests are NOT comprehensive.

3. Take advantage of class resources:

TEST_CASE("KDTree::findNearestNeighbor (2D), returns correct result",
"[weight=1][part=1]") {

/* ... */

 compareBinaryFiles(fname, "../data/kdtree_"+to_string(K)+"_"+to_string(size)+"-expected.kd");

 REQUIRE(tree.findNearestNeighbor(target) == expected);

Learning Objectives
Finish implementing BTree ADT

Analyze the performance of the BTree

BTree Recursive Insert

-3 8

23

25 31

42

43 55

M = 3

Insert always starts at a leaf but can propagate up repeatedly.

Insert(56),

BTree Size Restrictions

-3 8

23

25 31

42

43 55

M = 5

By definition we have max, but do we have min? Are these trees valid?

80

90

-3 8

23

25 31

42

43 55

M = 5 80

83 92

BTree Properties
A BTrees of order m is an m-ary tree and by definition:

- All keys within a node are ordered

- All nodes contain no more than m-1 keys.

- All internal nodes have exactly one more child than keys

Root nodes can be a leaf or have ___________ children.

All non-root, internal nodes have ________________ children.

All leaves in the tree are at the same level.

BTree

3

17

16

28 488

1 2 6 7 25 26 29 4512 14 52 53 55 68

If I tell you this is a valid BTree, what is the value of m?

BTree ADT

Constructor

Insert

Find

Delete

BTree Find Find(12)

9

6 7

5

10

12

11 152 3 18

BTree Find Find(7)

9

6 7

5

10

12

11 152 3 18

BTree Find

-3

8

23

25 31

42

43

55

-11 60

Find(70)

BTree Exists
bool Btree::_exists(BTreeNode & node, const K & key) {

 unsigned i;

 for (i = 0; i < node.keycount_ && key > node.keys_[i]; i++) { }

 if (i < node.keycount_ && key == node.keys_[i]) {

 return true;

 }

 if (node.isLeaf()) {

 return false;

 } else {

 BTreeNode nextChild = node._fetchChild(i);

 return _exists(nextChild, key);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

9

6 7

5

10

12

11 152 3 18

BTree Exists
bool Btree::_exists(BTreeNode & node, const K & key) {

 unsigned i;

 for (i = 0; i < node.keycount_ && key > node.keys_[i]; i++) { }

 if (i < node.keycount_ && key == node.keys_[i]) {

 return true;

 }

 if (node.isLeaf()) {

 return false;

 } else {

 BTreeNode nextChild = node._fetchChild(i);

 return _exists(nextChild, key);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

-3

8

23

25 31

42

43

55

-11 60

BTree Remove

9

6 7

5

10

12

11 152 3 188

BTree removal is complicated! It won’t be part of the lab.

However lets consider how we would handle the following cases…

BTree Remove Remove(8)

9

6 7

5

10

12

11 152 3 188

BTree Remove Remove(2)

9

6 7

5

10

12

11 152 3 188

M = 5,

BTree Remove Remove(15)

9

6 7

5

10

12

11 152 3 188

M = 5,

BTree Remove

-3

8

23

25 31

42

43

55

-11 60

Remove(42)M = 3,

BTree Remove

5

3

7

10

9

120

Remove(5)M = 3,

BTree Analysis
We’ve seen the ADT

What is the runtime for BTree operations (ignoring remove)?

-3

8

23

25 31

42

43

55

-11 60

BTree Analysis
We saw for AVL that finding an upper bound on the height (given
n) is the same as finding a lower bound on the nodes (given h).

We want to find a relationship for BTrees between the number of
keys (n) and the height (h).

BTree Analysis
The height of the BTree determines maximum number of
____________ possible in search data.

…and the height of the structure is: ______________.

Therefore: The number of seeks is no more than __________.

…suppose we want to prove this!

BTree Analysis
Strategy:

We will first count the number of nodes, level by level. 
 
Then, we will add the minimum number of keys per node (n).

 
The minimum number of nodes will tell us the largest possible
height (h), allowing us to find an upper-bound on height.

Root nodes can be a leaf or have [2, m] children.

All non-root, internal nodes have [ceil(m/2), m] children.

Key Facts:

BTree Analysis
Minimum number of nodes for a BTree of order m at each level:

Root:

Level 1:

Level 2:

Level 3:

Level h:

BTree Analysis
The total number of nodes is the sum of all the levels:

1 + 2
h−1

∑
k=0

tk
n−1

∑
i=0

xi =
xn − 1
x − 1

t = ⌈
m
2

⌉

BTree Analysis
The total number of nodes: 1 + 2

th − 1
t − 1

The total number of keys:

t = ⌈
m
2

⌉

BTree Analysis
The smallest total number of keys is:

So an inequality about n, the total number of keys:

Solving for h, since h is the max number of seek operations:

2th − 1

t = ⌈
m
2

⌉

BTree Analysis
Given m=101, a tree of height h=4 has:

Minimum Keys:

Maximum Keys:

BTree
The BTree is still used heavily today!

Improvements such as B+Tree and B*Tree exist far outside class scope

Thinking conceptually: Sorting a queue
How might we build a ‘queue’ in which our front element is the min?

Thinking conceptually: A tree without pointers
What class of (non-trivial) trees can we describe without pointers?

