Data Structures BTree

Department of Computer Science

Exam 2 Summary \rightarrow Very well!
Average: 87\% Median: 93\%
30% of class got 100%

Most missed questions on exam 2 were concepts from exam 1

$$
\rightarrow \text { Exams are cunclative! }
$$

If you aren't performing as well as you would like...

Go to office hours (at off peak times)!

MP Mosaics Extra Credit closes today!
G Extended for this mp only

MP Art

MP Art

MP Art

Learning Objectives In anetrer tree
Discuss alternatives to AVL Trees (and BSTs)
Implement the BTree

Considering hardware limitations

$$
\begin{array}{ccc}
\text { Can we always fit our data in main memory? } & X \leftrightarrow Y \\
G N_{0}! & A \text { spume it } & \\
& \leftrightarrow y e_{s} & O(1)
\end{array}
$$

Where else can we keep our data?
Had dive
External drive
AWS / Claud I down lood
Does this match our assumption that all memory lookups are $\mathrm{O}(1)$?

$$
\mathrm{No}!
$$

BTree Design Motivations \qquad
When large seek times become an issue, we address this by:

1. "Pack a node with more data" - store many keys in each node
d. we vat to have a unity tree

G Mare children for every node $\rightarrow M y$ tree height will be smaller $<$
3. Make sure my time is ordond/sosted! (Make data relevant. wit) only (ertoin trees can do this (easily) Store my tree as an array in loess menox

BTree

A B Tree (of order m) is a m-dry tree
Nodes contain up to $\mathbf{m - 1}$ keys and have |keys|+1 children

BTree Node (of order m)

$$
\text { Hery } M \geq 5
$$

(a^{4} cllay of value:
$\angle a_{n}$ aray of chider
ckas BTlee Node S
vecker (key, velm rai) objectsi
ξ vecker (BY/ae Mck*) (hiltan,

Ticakeaff!
\rightarrow faster if preallor eworncry
nobjects $\begin{aligned} & x \\ & 1\end{aligned}$
$\rightarrow \mathrm{N}$ ubju4s an per shorer

BTree Node (of order m)
Motivation is nonary
1 by mk $==8$ bilk
4 bytes = 32 fits
What value of \mathbf{m} should we be using?
Y we wont to determine this based on need or architertwe
Disk Blok 四 RAM
u Let m

us Let M equal at most one of these blains

$$
m=[\underbrace{\underbrace{\text { size of chute }})}_{\text {Size of object }}
$$

section info by cloud

$$
T C P \text { Netras/i packet } \rightarrow \sim_{1500} \text { bytes }
$$

BTree Insertion ide (sarky)
All keys within a BTree are ordered

$135 \sqrt{510}$

Insert (10)

$$
I_{\text {sot }}(s)
$$

(3)

$$
\frac{\text { Array insert is slow! }}{\text { bs in a sorted array }}
$$

BTree Insertion
All keys within a BTree are ordered

BTree Insertion
When a STree node reaches \mathbf{m} keys:

1) Find medico value
2) Split by "thawing up" the mention us we moke a new parent

2
5
9 10

© Assur no dupliectites
key
6
vera $($ val $)$

BTree Insertion

When a BTree node reaches \mathbf{m} keys, split and make a new parent.

1) Find ration

BTree Recursive Insert

Insert always starts at a leaf but can propagate up repeatedly.

BTree Visualization/Tool
https://www.cs.usfca.edu/~galles/visualization/BTree.html pley arand wi this vi'unolizor!'

BTree Size Restrictions

By definition we have max, but do we have min? Are these trees valid?

BTree Properties

A BTrees of order \boldsymbol{m} is an m-ary tree and by definition:

- All keys within a node are ordered
- All nodes contain no more than $\mathbf{m - 1}$ keys.
- All internal nodes have exactly one more child than keys

Root nodes can be a leaf or have \qquad children.

All non-root, internal nodes have \qquad children.

All leaves in the tree are at the same level.

BTree

If I tell you this is a valid BTree, what is the value of m ?

BTree ADT

Constructor

Insert

Find

Delete

BTree Exists

BTree Exists

BTree Remove

BTree removal is complicated! It won't be part of the lab.
However lets consider how we would handle the following cases...

For next time: BTree Analysis

We've seen the ADT

What is the runtime for our BTree operations?

