Data Structures AVL Tree Proof (and BTree)

CS 225 October 2, 2023
Brad Solomon & G Carl Evans

Learning Objectives

Review and finish AVL proof

Discuss alternatives to BSTs

AVL Tree Analysis

For an AVL tree of height h:

Find runs in: O(h)

Insert runs in: O(h)

Remove runs in: O(h)

Claim: The height of the AVL tree with n nodes is: $0(\log(n))$.

Plan of Action

Since our goal is to find the lower bound on **n** given **h**, we can begin by defining a function given **h** which describes the smallest number of nodes in an AVL tree of height **h**:

N(h) = minimum number of nodes in an AVL tree of height h

Simplify the Recurrence

$$N(h) = 1 + N(h - 1) + N(h - 2)$$

State a Theorem

Theorem: An AVL tree of height h has at least ______.

Proof by Induction:

- I. Consider an AVL tree and let h denote its height.
- II. Base Case: _____

An AVL tree of height ____ has at least ____ nodes.

Prove a Theorem

III. Base Case: _____

An AVL tree of height ____ has at least ____ nodes.

Prove a Theorem

IV. Induction Case: _____

Assume for all heights $i < h, N(i) \ge 2^{i/2}$. Prove that $N(h) \ge 2^{h/2}$

Prove a Theorem

V. Using a proof by induction, we have shown that:

...and inverting:

AVL Runtime Proof

An upper-bound on the height of an AVL tree is O(lg(n)):

```
N(h) := Minimum # of nodes in an AVL tree of height h

N(h) = 1 + N(h-1) + N(h-2)

> 1 + 2(h-1)/2 + 2(h-2)/2

> 2 \times 2(h-2)/2 = 2(h-2)/2+1 = 2h/2
```

Theorem #1:

Every AVL tree of height h has at least 2h/2 nodes.

Summary of Balanced BST

AVL Trees

- Max height: 1.44 * lg(n)
- Rotations:

```
Zero rotations on find
One rotation on insert
O(h) == O(lg(n)) rotations on remove
```

Red-Black Trees

- Max height: 2 * lg(n)
- Constant number of rotations on insert (max 2), remove (max 3).

Summary of Balanced BST

Pros:

- Running Time:

- Improvement Over:

- Great for specific applications:

Summary of Balanced BST

Cons:

- Running Time:

- In-memory Requirement:

Considering hardware limitations

Can we always fit our data in main memory?

Where else can we keep our data?

Does this match our assumption that all memory lookups are O(1)?

B-Tree Motivation

In Big-O we have assumed uniform time for all operations, but this isn't always true.

However, seeking data from the cloud may take 40ms+.

...an O(lg(n)) AVL tree no longer looks great: 10 **12** 6 9 11

BTree Design Motivations

When large seek times become an issue, we address this by:

BTree

A BTree (of order m) is a m-ary tree

Nodes contain up to **m-1** keys and have **|keys|+1** children

All leaves in a BTree are on the same level

-3 5	8	13
------	---	----

BTree Node (of order m)

What value of **m** should we be using?

All keys within a BTree are ordered

Insert(10)
Insert(5)
Insert(7)
Insert(9)
Insert(2)

BTree Insertion

M = 5

When a BTree node reaches **m** keys (or when you try to insert):

Insert(2)

5 7	9	10
-----	---	----

BTree Insertion

When a BTree node reaches m keys, split and make a new parent.

BTree Recursive Insert

Insert(56), M = 3

Insert always starts at a leaf but can propagate up repeatedly.

BTree Visualization/Tool

https://www.cs.usfca.edu/~galles/visualization/BTree.html

BTree Size Restrictions

By definition we have max, but do we have min? Are these trees valid?

BTree Properties

A **BTrees** of order **m** is an m-ary tree and by definition:

- All keys within a node are ordered
- All leaves contain no more than **m-1** keys.
- All internal nodes have exactly one more child than keys

Root nodes can be a leaf or have _____ children.

All non-root, internal nodes have _____ children.

All leaves in the tree are at the same level.

BTree

If I tell you this is a valid BTree, what is the value of m?

