
Department of Computer Science

Data Structures
K-d Tree

September 29, 2023
CS 225

Brad Solomon & G Carl Evans

MP_Lists Plagiarism Report

Still processing all the FAIR cases

Significant increase in plagiarism

Remember course policies!

MP_Mosaic Extra Credit Extension

Todays lecture will ‘review’ several key concepts

Concepts may be new to some, extra credit is extended

Extra credit deadline: Wednesday

Learning Objectives
Discuss (one) extension beyond BST

Finish AVL proof and introduce B-Trees

Introduce lambda functions in C++

Summary of Balanced BST
AVL Trees

- Max height: ???? * lg(n)

- Rotations:

 Zero rotations on find 
 One rotation on insert 
 O(h) == O(lg(n)) rotations on remove

Range-based Searches
Balanced BSTs are useful structures for range-based and
nearest-neighbor searches.

Q: Consider points in 1D: p = {p1, p2, …, pn}.

 …what points fall in [11, 42]?

Ex: 3 6 11 33 41 44 55

Range-based Searches

6

3 11

33

44

41

Q: Consider points in 1D: p = {p1, p2, …, pn}.

 …what points fall in [11, 42]?

55

Red-Black Trees in C++

V & std::map<K, V>::operator[](const K &)

std::map<K, V> map;

C++ provides us a balanced BST as part of the standard library:

std::map<K, V>::erase(const K &)

Red-Black Trees in C++
C++ provides us a balanced BST as part of the standard library:

iterator std::map<K, V>::lower_bound(const K &);

iterator std::map<K, V>::upper_bound(const K &);

Range-based Searches
Consider points in 2D: p = {p1, p2, …, pn}.

Q: What points are in the rectangle: 
 [(x1, y1), (x2, y2)]?

Q: What is the nearest point to (x1, y1)?

p1

p2

p4

p3

p7

p5 p6

Range-based Searches
Consider points in 2D: p = {p1, p2, …, pn}.

Tree construction:

p1

p2

p4

p3

p7

p5 p6

Range-based Searches

p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

Range-based Searches

p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

Nearest Neighbor: k-d tree
A k-d tree is similar but splits on points:

(7,2), (5,4), (9,6), (4,7), (2,3), (8,1), (9,8)

Nearest Neighbor: k-d tree

Nearest Neighbor: k-d tree
This construction seems easy conceptually but…

1. Review, understand, and use quickselect

2. Review, understand, and use lambda functions

Consider the function from Excel
COUNTIF(range, criteria)

Functions as arguments

template <typename Iter, typename Pred>

int Countif(Iter begin, Iter end, Pred pred) {

 int count = 0;

 auto cur = begin;

 while(cur != end) {

 if(pred(*cur))

 ++count;

 ++cur;

 }

 return count;

}

Countif.hpp
10

11

12

13

14

15

16

17

18

19

20

21

22

Functions as arguments

main.cpp
bool isNegative(int num) { return (num < 0); }

class IsNegative {

public:

 bool operator() (int num) { return (num < 0); }

};

int main() {

 std::vector<int> numbers = {1, 102, 105, 4, 5, 27, 41, -7, 999};

 auto isnegl = [](int num) { return (num < 0); };

 auto isnegfp = isNegative;

 auto isnegfunctor = IsNegative();

 cout << "There are " << Countif(numbers.begin(), numbers.end(), _______)

 << " negative numbers" << std::endl;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Lambda Functions in C++

[](){ }

Lambda Functions in C++

 int big;

 std::cout << "How big is big? ";

 std::cin >> big;

 auto isbig = [big](int num) { return (num >= big); };

 std::cout << "There are " << Countif(numbers.begin(), numbers.end(), isbig)

 << " big numbers" << std::endl;

}

29
30
31
32

33

34

35

36

37

38

main.cpp
Lambda Functions in C++

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first…

Backtracking: start recursing backwards -- store “best” possibility as you trace back

Nearest Neighbor: k-d tree

Nearest Neighbor: k-d tree

On ties, use smallerDimVal to determine which point remains curBest

Nearest Neighbor: k-d tree

Nearest Neighbor: k-d tree

Nearest Neighbor: k-d tree

Nearest Neighbor: k-d tree
Final tips:

The mp_mosaic writeup is long. READ IT

The suggestions in the writeup should be followed carefully

Plan of Action

 = minimum number of nodes in an AVL tree of height N(h) h

Since our goal is to find the lower bound on n given h, we
can begin by defining a function given h which describes the
smallest number of nodes in an AVL tree of height h:

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

State a Theorem

An AVL tree of height ____ has at least ____ nodes.

Theorem: An AVL tree of height h has at least __________.

Proof by Induction:

I. Consider an AVL tree and let h denote its height. 

II. Base Case: ______________

Prove a Theorem

An AVL tree of height ____ has at least ____ nodes.

III. Base Case: ______________

Prove a Theorem
IV. Induction Case: ______________

Assume for all heights , . Prove that i < h N(i) ≥ 2i/2 N(h) ≥ 2h/2

Prove a Theorem
V. Using a proof by induction, we have shown that:

…and inverting:

AVL Runtime Proof
An upper-bound on the height of an AVL tree is O(lg(n)):

 N(h) := Minimum # of nodes in an AVL tree of height h

 N(h) = 1 + N(h-1) + N(h-2)

 > 1 + 2(h-1)/2 + 2(h-2)/2 

 > 2 × 2(h-2)/2 = 2(h-2)/2+1 = 2h/2

 Theorem #1:

 Every AVL tree of height h has at least 2h/2 nodes.

Summary of Balanced BST
AVL Trees

- Max height: 1.44 * lg(n)

- Rotations:

 Zero rotations on find 
 One rotation on insert 
 O(h) == O(lg(n)) rotations on remove

Red-Black Trees

- Max height: 2 * lg(n)

- Constant number of rotations on insert (max 2), remove
(max 3).

Summary of Balanced BST
Pros:

- Running Time:

- Improvement Over:

- Great for specific applications:

Summary of Balanced BST
Cons:

- Running Time:

- In-memory Requirement:

Next Week: Considering hardware limitations
Can we always fit our data in main memory?

Where else can we keep our data?

Does this match our assumption that all memory lookups are O(1)?

