Data Structures

AVL Analysis

CS 225 September 27, 2023
Brad Solomon & G Carl Evans

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives
Review AVL trees

Prove that the AVL Tree speeds up all operations

AVL Tree Rotations All rotations are O(1)

All rotations reduce
subtree height by one

r‘\@ ,P’

-
f

AVL Tree Analysis

For an AVL tree of height h:

Find runs in:

Insert runs in:

Remove runs in:

Claim: The height of the AVL tree with n nodes is:

AVL Tree Analysis
Definition of big-O:

f(n)is O(g(n)) iff dc,ks.t. f(n) <cg(n) Vn > k

...or, with pictures:

A

h, height

>
n, number of nodes

AVL Tree Analysis

t c*g(n)

h, height

>
n, number of nodes

The height of the tree, f(n), will always be less than
¢ x g(n) for all values where n > k.

AVL Tree Analysis 1)

8 g\, crgT'(
A
1 c*gn) 5
N -
20]
: £
g(n) -
n, number of nodes h, heig>ht
f(n) = “Tree height given nodes” £~1(h) = “Nodes in tree given height”

The number of nodes in the tree, f-1(h), will always
be greater than ¢ x g-1(h) for all values where n > k.

Plan of Action

Since our goal is to find the lower bound on n given h, we
can begin by defining a function given h which describes the
smallest number of nodes in an AVL tree of height h:

N(h) = minimum number of nodes in an AVL tree of height A

Simplify the Recurrence
Nh)=1+Nh—-1)+Nh-2)
N(h) > N(h) — 1

State a Theorem
Theorem: An AVL tree of height h has at least

Proof by Induction:
|. Consider an AVL tree and let h denote its height.

. Base Case:

An AVL tree of height has at least nodes.

Prove a Theorem
[Il. Base Case:

An AVL tree of height has at least nodes.

Prove a Theorem
V. Induction Case:

If for all heights i < h, N(i) > 2"

then we must show for height & that N(h) > 22

Prove a Theorem @

V. Using a proof by induction, we have shown that:

...and inverting:

AVL Runtime Proof
An upper-bound on the height of an AVL tree is O(Ig(n)):

N(h) := Minimum # of nodes in an AVL tree of height h
N(h) =1 + N(h-1) + N(h-2)

> 1 + 2h-1/2 + 2h-2/2

> 2 x 2h-2/2=2h-2/2+1= 2h/2

Theorem #1:
Every AVL tree of height h has at least 2h/2 nodes.

AVL Runtime Proof
An upper-bound on the height of an AVL tree is O(Ig(n)):

of nodes (n) 2 N(h) > 2h/2

n > 2h/2

lg(n) > h/2

2 xlg(n)>h

h<2xlg(n) ,forh21

Proved: The maximum number of nodes in an AVL tree of
height h is less than 2 x Ig(n).

Summary of Balanced BST

AVL Trees
- Max height: 1.44 * |g(n)
- Rotations:

Summary of Balanced BST

AVL Trees
- Max height: 1.44 * |g(n)
- Rotations:

Zero rotations on find
One rotation on insert
O(h) == O(lg(n)) rotations on remove

Red-Black Trees

- Max height: 2 * Ig(n)

- Constant number of rotations on insert (max 2), remove
(max 3).

Summary of Balanced BST

Pros:
- Running Time:

- Improvement Over:

- Great for specific applications:

Summary of Balanced BST

Cons:
- Running Time:

- In-memory Requirement:

Range-based Searches
Q: Consider points in 1D: p = {py, Py «+» Py}
..what points fall in [11, 42]?

Tree construction:

Range-based Searches

Balanced BSTs are useful structures for range-based and
nearest-neighbor searches.

Q: Consider points in 1D: p = {py, Py «e» Py}
..what points fall in [11, 42]?

3 6 11 33 41 44 55

Range-based Searches
Q: Consider points in 1D: p = {py, Py «+» Py}
..what points fall in [11, 42]°?

Red-Black Trees in C++

C++ provides us a balanced BST as part of the standard library:
std: :map<K, V> map;

V & std: :map<K, V>::operator[] (const K &)

std: :map<K, V>::erase(const K &)

Red-Black Trees in C++

iterator std::map<K, V>::lower bound(const K &);
iterator std::map<K, V>::upper bound(const K &);

Range-based Searches

Consider points in 2D: p ={py, P, +-» P, }-

Q: What points are in the rectangle:
[(X3, ¥1), (X5 ¥,) 1?

Q: What is the nearest point to (x,, y,)?

Range-based Searches
Consider points in 2D: p ={py, P, +-» P, }-

Tree construction:

