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Learning Objectives
Review AVL trees

Prove that the AVL Tree speeds up all operations




AVL Tree Rotations All rotations are O(1)

All rotations reduce
subtree height by one
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AVL Tree Analysis

For an AVL tree of height h:

Find runs in:

Insert runs in:

Remove runs in:

Claim: The height of the AVL tree with n nodes is:




AVL Tree Analysis
Definition of big-O:

f(n)is O(g(n)) iff dc,ks.t. f(n) <cg(n) Vn > k

...or, with pictures:
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h, height

>
n, number of nodes




AVL Tree Analysis

t c*g(n)

h, height

>
n, number of nodes

The height of the tree, f(n), will always be less than
¢ x g(n) for all values where n > k.




AVL Tree Analysis 1)
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n, number of nodes h, heig>ht
f(n) = “Tree height given nodes” £~1(h) = “Nodes in tree given height”

The number of nodes in the tree, f-1(h), will always
be greater than ¢ x g-1(h) for all values where n > k.




Plan of Action

Since our goal is to find the lower bound on n given h, we
can begin by defining a function given h which describes the
smallest number of nodes in an AVL tree of height h:

N(h) = minimum number of nodes in an AVL tree of height A




Simplify the Recurrence
Nh)=1+Nh—-1)+Nh-2)
N(h) > N(h) — 1




State a Theorem
Theorem: An AVL tree of height h has at least

Proof by Induction:
|. Consider an AVL tree and let h denote its height.

. Base Case:

An AVL tree of height has at least nodes.




Prove a Theorem
[Il. Base Case:

An AVL tree of height has at least nodes.




Prove a Theorem
V. Induction Case:

If for all heights i < h, N(i) > 2"

then we must show for height & that N(h) > 22




Prove a Theorem @

V. Using a proof by induction, we have shown that:

...and inverting:




AVL Runtime Proof
An upper-bound on the height of an AVL tree is O( Ig(n) ):

N(h) := Minimum # of nodes in an AVL tree of height h
N(h) =1 + N(h-1) + N(h-2)

> 1 + 2h-1/2 + 2h-2/2

> 2 x 2h-2/2=2h-2/2+1= 2h/2

Theorem #1:
Every AVL tree of height h has at least 2h/2 nodes.




AVL Runtime Proof
An upper-bound on the height of an AVL tree is O( Ig(n) ):

# of nodes (n) 2 N(h) > 2h/2

n > 2h/2

lg(n) > h/2

2 xlg(n)>h

h<2xlg(n) ,forh21

Proved: The maximum number of nodes in an AVL tree of
height h is less than 2 x Ig(n).




Summary of Balanced BST

AVL Trees
- Max height: 1.44 * |g(n)
- Rotations:




Summary of Balanced BST

AVL Trees
- Max height: 1.44 * |g(n)
- Rotations:

Zero rotations on find
One rotation on insert
O(h) == O(lg(n)) rotations on remove

Red-Black Trees

- Max height: 2 * Ig(n)

- Constant number of rotations on insert (max 2), remove
(max 3).




Summary of Balanced BST

Pros:
- Running Time:

- Improvement Over:

- Great for specific applications:




Summary of Balanced BST

Cons:
- Running Time:

- In-memory Requirement:




Range-based Searches
Q: Consider points in 1D: p = {py, Py «+» Py}
..what points fall in [11, 42]?

Tree construction:




Range-based Searches

Balanced BSTs are useful structures for range-based and
nearest-neighbor searches.

Q: Consider points in 1D: p = {py, Py «e» Py}
..what points fall in [11, 42]?

3 6 11 33 41 44 55




Range-based Searches
Q: Consider points in 1D: p = {py, Py «+» Py}
..what points fall in [11, 42]°?




Red-Black Trees in C++

C++ provides us a balanced BST as part of the standard library:
std: :map<K, V> map;

V & std: :map<K, V>::operator[] ( const K & )

std: :map<K, V>::erase( const K & )




Red-Black Trees in C++

iterator std::map<K, V>::lower bound( const K & );
iterator std::map<K, V>::upper bound( const K & );




Range-based Searches

Consider points in 2D: p ={py, P, +-» P, }-

Q: What points are in the rectangle:
[ (X3, ¥1), (X5 ¥,) 1?

Q: What is the nearest point to (x,, y,)?




Range-based Searches
Consider points in 2D: p ={py, P, +-» P, }-

Tree construction:




