
Department of Computer Science

Data Structures
AVL Analysis

September 27, 2023
CS 225

Brad Solomon & G Carl Evans

Learning Objectives

Prove that the AVL Tree speeds up all operations

Review AVL trees

AVL Tree Rotations
A

B

C

B

C

A

All rotations are O(1)

All rotations reduce
subtree height by one

template <typename K, typename V>

void AVL<K, D>::_insert(const K & key, const V & data, TreeNode
*& cur) {

 if (cur == NULL) { cur = new TreeNode(key, data); }

 else if (key < cur->key) { _insert(key, data, cur->left); }

 else if (key > cur->key) { _insert(key, data, cur->right);}

 _ensureBalance(cur);

}

151

152

153

157

160

166

167

template <typename K, typename V>

void AVL<K, D>::_ensureBalance(TreeNode *& cur) {

 // Calculate the balance factor:

 int balance = height(cur->right) - height(cur->left);

 // Check if the node is current not in balance:

 if (balance == -2) {

 int l_balance =

 height(cur->left->right) - height(cur->left->left);

 if (l_balance == -1) { ______rotateRight()_________; }

 else { _____rotateLeftRight()______; }

 } else if (balance == 2) {

 int r_balance =

 height(cur->right->right) - height(cur->right->left);

 if(r_balance == 1) { ______rotateLeft()_________; }

 else { _____rotateRightLeft()______; }

 }

 _updateHeight(cur);

};

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

AVL Insertion
Given an AVL is balanced, insert can insert at most one imbalance

b=1

AVL Insertion
Given an AVL is balanced, insert can insert at most one imbalance

b=2

A B

AVL Insertion
If we insert in B, I must have a balance pattern of 2, 1

b=2

A

b=1

C D

AVL Insertion
A left rotation fixes our imbalance in our local tree.

b=2

A

b=1

C D

A

b=0

C D

After rotation, subtree has pre-insert height. (Overall tree is balanced)

AVL Insertion
If we insert in A, I must have a balance pattern of 2, -1

b=2

B

b=-1

C D

AVL Insertion
A rightLeft rotation fixes our imbalance in our local tree.

b=2

B

b=-1

C D

C

b=0

D B

After rotation, subtree has pre-insert height. (Overall tree is balanced)

AVL Insertion
Theorem: 
If an insertion occurred in subtrees t1
or t2 and an imbalance was first
detected at t, then a ____________
rotation about t restores the balance
of the tree.

We gauge this by noting the balance
factor of t is ______ and the balance
factor of t->left is ______.

t

t4

t3

t1 t2

AVL Insertion
Theorem: 
If an insertion occurred in subtrees t2
or t3 and an imbalance was first
detected at t, then a ____________
rotation about t restores the balance
of the tree.

We gauge this by noting the balance
factor of t is ______ and the balance
factor of t->left is ______.

t

t4

t1

t2 t3

AVL Insertion
We’ve seen every possible insert that can cause an imbalance

A single* rotation restores balance and corrects height!

Insert increases height by at most: _________

A rotation reduces the height of the subtree by: _________

AVL Remove

5

3 6

4

2

8

10

9 12

111 7

_remove(10)

AVL Remove
_remove(10)

5

3 6

4

2

8

9

12

111 7

AVL Remove
_remove(10)

5

3 6

4

2

8

9

12

111 7 11

12

9

R@12

L@9

11

129

AVL Remove
_remove(10)

5

3 6

4

2

8

11

9 12

1 7

AVL Remove
_remove(10)

5

3 6

4

2

8

11

9 12

1 7
R@8

5

3 8

11641

3

1 4

2

5

8

6 11

7 129

5

3 6

4

2

8

10

9 12

111 7

AVL Remove
Remove (pseudo code): 
1: Remove at proper place 
2: Check for imbalance 
3: Rotate, if necessary 
4: Update height

_remove(10)

AVL Remove

?

? ?

???5

X

AVL Remove
An AVL remove step can reduce a subtree height by at most:

We might have to perform a rotation at every level of the tree!

But a rotation reduces the height of a subtree by one!

AVL Tree Analysis

For an AVL tree of height h:

Find runs in: __________.

Insert runs in: __________.

Remove runs in: __________.

Claim: The height of the AVL tree with n nodes is: __________.

AVL Tree Analysis
Definition of big-O:

…or, with pictures:

n, number of nodes

h,
 h

ei
gh

t
 is iff s.t. f(n) O(g(n)) ∃c, k f(n) ≤ cg(n) ∀n > k

n, number of nodes

h,
 h

ei
gh

t c * g(n)

g(n)

f (n)
k

The height of the tree, f(n), will always be less than
c × g(n) for all values where n > k.

AVL Tree Analysis

AVL Tree Analysis

n, number of nodes

h,
 h

ei
gh

t

n,
 n

um
be

r o
f n

od
es

h, height

c * g(n)

g(n)

f (n)
k

The number of nodes in the tree, f-1(h), will always
be greater than c × g-1(h) for all values where n > k.

g−1(h) c * g−1(h)

f −1(h)

 = “Tree height given nodes”f(n) = “Nodes in tree given height”f −1(h)

Plan of Action

 = minimum number of nodes in an AVL tree of height N(h) h

Since our goal is to find the lower bound on n given h, we
can begin by defining a function given h which describes the
smallest number of nodes in an AVL tree of height h:

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

State a Theorem

An AVL tree of height ____ has at least ____ nodes.

Theorem: An AVL tree of height h has at least __________.

Proof by Induction:

I. Consider an AVL tree and let h denote its height. 

II. Base Case: ______________

Prove a Theorem

An AVL tree of height ____ has at least ____ nodes.

III. Base Case: ______________

Prove a Theorem
IV. Induction Case: ______________

Assume for all heights , . Prove that i < h N(i) ≥ 2i/2 N(h) ≥ 2h/2

Prove a Theorem
V. Using a proof by induction, we have shown that:

…and inverting:

AVL Runtime Proof
An upper-bound on the height of an AVL tree is O(lg(n)):

 N(h) := Minimum # of nodes in an AVL tree of height h

 N(h) = 1 + N(h-1) + N(h-2)

 > 1 + 2(h-1)/2 + 2(h-2)/2 

 > 2 × 2(h-2)/2 = 2(h-2)/2+1 = 2h/2

 Theorem #1:

 Every AVL tree of height h has at least 2h/2 nodes.

AVL Runtime Proof
An upper-bound on the height of an AVL tree is O(lg(n)):

 # of nodes (n) ≥ N(h) > 2h/2

 n > 2h/2

 lg(n) > h/2

 2 × lg(n) > h

 h < 2 × lg(n) , for h ≥ 1

Proved: The maximum number of nodes in an AVL tree of
height h is less than 2 × lg(n).

