Data Structures AVL Analysis

CS 225 September 27, 2023 Brad Solomon & G Carl Evans

Learning Objectives

Review AVL trees

Prove that the AVL Tree speeds up all operations

1) Our cotations fix the interlances in a AUL tree

Los Any operation that modifies our trees can be fixed

2) The balance of an AVL tree linits our height


```
template <typename K, typename V>
152 void AVL<K, D>::_insert(const K & key, const V & data, TreeNode,
    *& cur) {
      if (cur == NULL) { cur = new TreeNode(key, data);
153
     else if (key < cur->key) { insert( key, data, cur->left ); }
157
     else if (key > cur->key) { _insert( key, data, cur->right );}
160
166
     ensureBalance(cur);
167
```

```
1/ex/volc/635
119
   template <typename K, typename V>
120
   void AVL<K, D>:: ensureBalance(TreeNode *& cur) {
121
     // Calculate the balance factor:
    int balance = height(cur->right) - height(cur->left);
122
123
124
     // Check if the node is current not in balance:
     if (balance ==(-2)) {
125
126
       int | balance =
          height(cur->left->right) - height(cur->left->left);
127
       rotateLeftRight(); }
128
      else
     } else if (balance == 2)
129
       int r balance =
130
           height(cur->right->right) - height(cur->right->left);
      if( r balance == 1 ) { rotateLeft() ____; }
131
132
                         { rotateRightLeft() ; }
       else
133
134
135
     updateHeight(cur);
136
```

one node

Given an AVL is balanced, insert can insert at most one imbalance

G Insert con soulines not change height P=7 4) Inselt can conse an imbolance issert & height changes

Given an AVL is balanced, insert can insert at most one imbalance

If we insert in B, I must have a balance pattern of 2, 1

y left whim

After rotation, subtree has **pre-insert height**. (Overall tree is balanced)

If we insert in A, I must have a balance pattern of 2, -1

2 / must be pettern if insert into sutro.

A & height increases original balance is 2

A **rightLeft** rotation fixes our imbalance in our local tree.

After rotation, subtree has **pre-insert height**. (Overall tree is balanced)

Theorem:

If an insertion occurred in subtrees $\mathbf{t_1}$ or $\mathbf{t_2}$ and an imbalance was first detected at \mathbf{t} , then a rotation about \mathbf{t} restores the balance of the tree.

We gauge this by noting the balance factor of **t is** ____ and the balance factor of **t->left** is ____.

Theorem:

If an insertion occurred in subtrees $\mathbf{t_2}$ or $\mathbf{t_3}$ and an imbalance was first detected at \mathbf{t} , then a $\mathbf{t_3}$ rotation about \mathbf{t} restores the balance of the tree.

We gauge this by noting the balance factor of **t** is ____ and the balance factor of **t->left** is ____.

We've seen every possible insert that can cause an imbalance

Insert increases height by at most: _____((a be 0) =

A rotation reduces the height of the subtree by: ______

A single* rotation restores balance and corrects height!

remove(10)

remove (10) **AVL** Remove 8 11 **12** -2,-2 -> Risht

An AVL remove step can reduce a subtree height by at most:

But a rotation *reduces* the height of a subtree by one!

We might have to perform a rotation at every level of the tree!

For an AVL tree of height h

Find runs in: $\frac{O(h)}{h}$.

Insert runs in: _

Remove runs in: \bigcirc $\begin{pmatrix} h \end{pmatrix}$

Q O h

con rotation (

Esna (renail + film 170P)

O(h)

(1) . Oh/ Hhs

. O(log n) (

Claim: The height of the AVL tree with n nodes is: _

Definition of big-O:

f(n) is O(g(n)) iff $\exists c, k$ s.t. $f(n) \le cg(n) \ \forall n > k$ constat ...or, with pictures: (+ (h) = Tree height give a nadis 4 notis n, number of nodes

The height of the tree, f(n), will always be <u>less than</u> $c \times g(n)$ for all values where n > k.

$$f(n)$$
 = "Tree height given nodes"

 $f^{-1}(h)$ = "Nodes in tree given height"

The number of nodes in the tree, $f^{-1}(h)$, will always be greater than $c \times g^{-1}(h)$ for all values where n > k.

Plan of Action If unclear by examples

Since our goal is to find the lower bound on **n** given **h**, we can begin by defining a function given **h** which describes the smallest number of nodes in an AVL tree of height **h**:

number of nodes in an AVL tree of height hh > 2 h=0

Simplify the Recurrence

$$N(h) = 1 + N(h - 1) + N(h - 2)$$

State a Theorem

Theorem: An AVL tree of height h has at least ______.

Proof by Induction:

- I. Consider an AVL tree and let h denote its height.
- II. Base Case: _____

An AVL tree of height ____ has at least ____ nodes.

Prove a Theorem

III. Base Case: _____

An AVL tree of height ____ has at least ____ nodes.

Prove a Theorem

IV. Induction Case: _____

Assume for all heights $i < h, N(i) \ge 2^{i/2}$. Prove that $N(h) \ge 2^{h/2}$

Prove a Theorem

V. Using a proof by induction, we have shown that:

...and inverting:

AVL Runtime Proof

An upper-bound on the height of an AVL tree is O(lg(n)):

```
N(h) := Minimum # of nodes in an AVL tree of height h

N(h) = 1 + N(h-1) + N(h-2)

> 1 + 2(h-1)/2 + 2(h-2)/2

> 2 \times 2(h-2)/2 = 2(h-2)/2+1 = 2h/2
```

Theorem #1:

Every AVL tree of height h has at least 2h/2 nodes.

AVL Runtime Proof

An upper-bound on the height of an AVL tree is O(lg(n)):

```
# of nodes (n) \geq N(h) > 2^{h/2}

n > 2^{h/2}

lg(n) > h/2

2 \times lg(n) > h

h < 2 \times lg(n) , for h \geq 1
```

Proved: The maximum number of nodes in an AVL tree of height h is less than $2 \times lg(n)$.