Data Structures
 AVL Analysis

Department of Computer Science

Learning Objectives
Review AVL trees
Prove that the AVL Tree speeds up all operations

1) Our rotations fix the intalonces in a All tree G Any operation that madifios our thees can be fixed
2) The balance of an AvI the limits our herat

AVL Tree Rotations

All rotations are $\mathrm{O}(1)$

AVL Insertion
Given an AVL is balanced, insert can insert at most one imbalance
G Insert con soulimes not choose hel'sht

AVL Insertion
Given an AVL is balanced, insert can insert at most one imbalance

AVL Insertion
If we insert in B, I must have a balance pattern of $\mathbf{2 , 1}$

ζ Left sotaitin

AVL Insertion

A left rotation fixes our imbalance in our local tree. $h+1$

After rotation, subtree has pre-insert height. (Overall tree is balanced)

AVL Insertion
If we insert in A, I must have a balance pattern of $\mathbf{2 , - 1}$

2,4 must be pattern if inert info sartre $A \&$ height increases of original ibalani is 2

AVL Insertion

$$
\begin{equation*}
2,1 \rightarrow \tag{D}
\end{equation*}
$$

A rightLeft rotation fixes our imbalance in our local tree.

After rotation, subtree has pre-insert height. (Overall tree is balanced)

AVL Insertion

Theorem:

If an insertion occurred in subtrees \mathbf{t}_{1} or $\mathbf{t}_{\mathbf{2}}$ and an imbalance was first detected at \mathbf{t}, then a right rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of t is -2 and the balance factor of t->left is $\quad-1$

AVL Insertion

Theorem:

If an insertion occurred in subtrees t_{2} or $\mathbf{t}_{\mathbf{3}}$ and an imbalance was first detected at \mathbf{t}, then a Left Risht rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of t is -2 and the balance factor of t->left is \qquad .

AVL Insertion

We've seen every possible insert that can cause an imbalance
Insert increases height by at most: \qquad (ca be 0)

A rotation reduces the height of the subtree by:

A single* rotation restores balance and corrects height!
dauble cotzi.ans "Rishbleft" couts as one colzation "eft Risht"

AVL Remove

AVL Remove

AVL Remove

AVL Remove

remove (10)
$b=2-3=-2$

$-2,-2 \rightarrow$ 号.sht

AVL Remove

AVL Remove

AVL Remove

AVL Remove
An AVL remove step can reduce a subtree height by at most:
But a rotation reduces the height of a subtree by one!
We might have to perform a rotation at every level of the tree!

AVL Tree Analysis

For an AVL tree of height h:

Find runs in: \qquad

Insert runs in: \qquad

Remove runs in: \qquad .

$$
\underbrace{0}_{O(h)}+
$$

Claim: The height of the AVL tree with n nodes is: \qquad $O(\log n)$ \leftrightarrows

AVL Tree Analysis
Definition of big-O:

$$
f(n) \text { is } O(g(n)) \text { iff } \exists c, k \text { s.t. } f(n) \leq c g(n) \forall n>k
$$

...or, with pictures:
O.Sth 4

$$
\begin{aligned}
& \text { 萲 } \\
& f(n)=\text { Tree heisht gim } 1 \text { nodes } \\
& 4 \text { nodis }
\end{aligned}
$$

AVL Tree Analysis

The height of the tree, $\mathbf{f}(\mathbf{n})$, will always be less than $\mathbf{c} \times \mathbf{g}(\mathbf{n})$ for all values where $\mathbf{n}>\mathbf{k}$.

AVL Tree Analysis
${ }_{f^{-1}(h)}$ Eabier

$f(n)=$ "Tree height given nodes"
$f^{-1}(h)=$ "Nodes in tree given height"
The number of nodes in the tree, $\mathbf{f - 1}(\mathbf{h})$, will always be greater than $\mathbf{c} \times \mathbf{g}^{\mathbf{- 1}} \mathbf{(h)}$ for all values where $\mathbf{n}>\mathbf{k}$.

Plan of Action If unclear ty examples
Since our goal is to find the lower bound on \mathbf{n} given \mathbf{h}, we can begin by defining a function given \mathbf{h} which describes the smallest number of nodes in an AVL tree of height h:
$N(h)=$ minimum number of nodes in an AVL tree of height h

Simplify the Recurrence
$N(h)=1+N(h-1)+N(h-2)$

State a Theorem

Theorem: An AVL tree of height h has at least

Proof by Induction:

I. Consider an AVL tree and let \mathbf{h} denote its height.
II. Base Case:
\qquad has at least \qquad nodes.

Prove a Theorem

III. Base Case: \qquad
\qquad has at least \qquad nodes.

Prove a Theorem

IV. Induction Case:

Assume for all heights $i<h, N(i) \geq 2^{i / 2}$. Prove that $N(h) \geq 2^{h / 2}$

Prove a Theorem

V. Using a proof by induction, we have shown that:
...and inverting:

AVL Runtime Proof

An upper-bound on the height of an AVL tree is $\mathbf{O}(\lg (\mathbf{n}))$:

$$
\begin{aligned}
N(h):= & \text { Minimum \# of nodes in an AVL tree of height } h \\
N(h)= & 1+N(h-1)+N(h-2) \\
& >1+2^{(h-1) / 2+2(h-2) / 2} \\
& >2 \times 2^{(h-2) / 2}=2^{(h-2) / 2+1}=2^{h / 2}
\end{aligned}
$$

Theorem \#1:
Every AVL tree of height h has at least $2^{h / 2}$ nodes.

AVL Runtime Proof

An upper-bound on the height of an AVL tree is $\mathbf{O}(\lg (\mathbf{n})$):

$$
\begin{aligned}
& \# \text { of nodes }(n) \geq N(h)>2 h / 2 \\
& n>2 h / 2 \\
& \lg (n)>h / 2 \\
& 2 \times \lg (n)>h \\
& h<2 \times \lg (n) \quad, \text { for } h \geq 1
\end{aligned}
$$

Proved: The maximum number of nodes in an AVL tree of height h is less than $2 \times \lg (n)$.

