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Learning Objectives

Prove that the AVL Tree speeds up all operations

Review AVL trees



AVL Tree Rotations
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All rotations are O(1)

All rotations reduce 
subtree height by one



template <typename K, typename V>

void AVL<K, D>::_insert(const K & key, const V & data, TreeNode 
*& cur) {

  if (cur == NULL)         { cur = new TreeNode(key, data);   }

  else if (key < cur->key) { _insert( key, data, cur->left ); }

  else if (key > cur->key) { _insert( key, data, cur->right );}

  _ensureBalance(cur);

}
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template <typename K, typename V>

void AVL<K, D>::_ensureBalance(TreeNode *& cur) {

  // Calculate the balance factor:

  int balance = height(cur->right) - height(cur->left);


  // Check if the node is current not in balance:

  if ( balance == -2 ) {

    int l_balance =

          height(cur->left->right) - height(cur->left->left);

    if ( l_balance == -1 ) { ______rotateRight()_________; }

    else                   { _____rotateLeftRight()______; }

  } else if ( balance == 2 ) {

    int r_balance =

          height(cur->right->right) - height(cur->right->left);

    if( r_balance == 1 ) { ______rotateLeft()_________; }

    else                 { _____rotateRightLeft()______; }

  }


  _updateHeight(cur);

};
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AVL Insertion
Given an AVL is balanced, insert can insert at most one imbalance

b=1 



AVL Insertion
Given an AVL is balanced, insert can insert at most one imbalance

b=2 

A B



AVL Insertion
If we insert in B, I must have a balance pattern of 2, 1

b=2 
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AVL Insertion
A left rotation fixes our imbalance in our local tree.
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After rotation, subtree has pre-insert height. (Overall tree is balanced)



AVL Insertion
If we insert in A, I must have a balance pattern of 2, -1

b=2 

B

b=-1 

C D



AVL Insertion
A rightLeft rotation fixes our imbalance in our local tree.
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After rotation, subtree has pre-insert height. (Overall tree is balanced)



AVL Insertion
Theorem: 
If an insertion occurred in subtrees t1 
or t2 and an imbalance was first 
detected at t, then a ____________ 
rotation about t restores the balance 
of the tree.


We gauge this by noting the balance 
factor of t is ______ and the balance 
factor of t->left is ______.

t

t4

t3

t1 t2



AVL Insertion
Theorem: 
If an insertion occurred in subtrees t2 
or t3 and an imbalance was first 
detected at t, then a ____________ 
rotation about t restores the balance 
of the tree.


We gauge this by noting the balance 
factor of t is ______ and the balance 
factor of t->left is ______.

t

t4

t1

t2 t3



AVL Insertion
We’ve seen every possible insert that can cause an imbalance

A single* rotation restores balance and corrects height!

Insert increases height by at most: _________

A rotation reduces the height of the subtree by: _________



AVL Remove
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_remove(10)



AVL Remove
_remove(10)
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AVL Remove
_remove(10)
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AVL Remove
_remove(10)
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AVL Remove
_remove(10)
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AVL Remove
Remove (pseudo code): 
1: Remove at proper place 
2: Check for imbalance 
3: Rotate, if necessary 
4: Update height

_remove(10)



AVL Remove
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AVL Remove
An AVL remove step can reduce a subtree height by at most:

We might have to perform a rotation at every level of the tree!

But a rotation reduces the height of a subtree by one!



AVL Tree Analysis

For an AVL tree of height h: 

Find runs in: __________.

Insert runs in: __________.

Remove runs in: __________.

Claim: The height of the AVL tree with n nodes is: __________.



AVL Tree Analysis
Definition of big-O:


…or, with pictures:

n, number of nodes

h,
 h
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gh

t
 is  iff  s.t.   f(n) O(g(n)) ∃c, k f(n) ≤ cg(n) ∀n > k



n, number of nodes
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The height of the tree, f(n), will always be less than 
c × g(n) for all values where n > k.

AVL Tree Analysis



AVL Tree Analysis

n, number of nodes
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h, height

c * g(n)

g(n)

f (n)
k

The number of nodes in the tree, f-1(h), will always 
be greater than c × g-1(h) for all values where n > k.

g−1(h) c * g−1(h)

f −1(h)

 = “Tree height given nodes”f(n)  = “Nodes in tree given height”f −1(h)



Plan of Action

    = minimum number of nodes in an AVL tree of height N(h) h

Since our goal is to find the lower bound on n given h, we 
can begin by defining a function given h which describes the 
smallest number of nodes in an AVL tree of height h:



Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)



State a Theorem

An AVL tree of height ____ has at least ____ nodes.  

Theorem: An AVL tree of height h has at least __________.


Proof by Induction:


I. Consider an AVL tree and let h denote its height. 

II. Base Case: ______________




Prove a Theorem

An AVL tree of height ____ has at least ____ nodes.  

III. Base Case: ______________



Prove a Theorem
IV. Induction Case: ______________

Assume for all heights , . Prove that i < h N(i) ≥ 2i/2 N(h) ≥ 2h/2



Prove a Theorem
V. Using a proof by induction, we have shown that:

…and inverting:



AVL Runtime Proof
An upper-bound on the height of an AVL tree is O( lg(n) ):


    N(h) := Minimum # of nodes in an AVL tree of height h 

    N(h) = 1 + N(h-1) + N(h-2)


                 > 1 + 2(h-1)/2 + 2(h-2)/2 

                 > 2 × 2(h-2)/2 = 2(h-2)/2+1 = 2h/2


   Theorem #1:


       Every AVL tree of height h has at least 2h/2 nodes.



AVL Runtime Proof
An upper-bound on the height of an AVL tree is O( lg(n) ):


    # of nodes (n) ≥ N(h) > 2h/2


    n > 2h/2

    lg(n) > h/2


    2 × lg(n) > h


    h < 2 × lg(n)                 , for h ≥ 1


Proved: The maximum number of nodes in an AVL tree of 
height h is less than 2 × lg(n).


