Data Structures

AVL Trees

CS 225 September 25, 2023
Brad Solomon & G Carl Evans

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives
Review why we need balanced trees

Review what an AVL rotation does

Explore the four possible rotations for an AVL tree

BST Analysis — Running Time

- BN
9
2

find O(h)

insert O(h)

(2
delete O(h) ° ° °

traverse O(n) e °

AVL-Tree: A self-balancing binary search tree

Every node in an AVL tree has a balance of:

Left Rotation

Left Rotation

All rotations are local (subtrees are not impacted)

Left Rotation
All rotations preserve BST property

&,

Right Rotation

Right Rotation

New Root

RightRotation @ 38

AVL Rotation Practice

AVL Rotation Practice

6@ @

Somethings not quite right...

LeftRight Rotation

LeftRight Rotation

Left @13

RS

@ Right @38

RightLeft Rotation

AVL Rotations

Left and right rotation convert sticks into mountains

AVL Rotations

LeftRight (RightLeft) convert elbows into sticks into mountains

ONERO OO
s

AVL Rotations
Four kinds of rotations: (L, R, LR, RL)

1. All rotations are local (subtrees are not impacted)
2. The running time of rotations are constant

3. The rotations maintain BST property

Goal:

AVL Rotations

We can identify which rotation to do using balance

@

()

AVL Rotations

We can identify which rotation to do using balance

AVL Rotation Practice

£

AVL vs BST ADT @

The AVL tree is a modified binary search tree that rotates when necessary

struct TreeNode {
T key;
unsigned height;
TreeNode *left;
TreeNode *right;

iy

o0k WMNRKR

How does the constraint on balance affect the core functions?

Find

Insert

Remove

AVL Find

(=
£5%F

_f£ind (7

)

AVL Insertion

oo dWMNER

struct TreeNode {
T key;

unsigned height;

TreeNode *left;

TreeNode *right;

Iy 8

_insert(6.5)

(.

(2 O
OO OO
OJOEROEENCO
O

_insert(6.5)

AVL Insertion

Insert (recursive pseudo code):

1: Insert at proper place °
2: Check for imbalance

3: Rotate, if necessary ° Q
4: Update height e a ° @

struct TreeNode ({ @ @

T key;

unsigned height;
TreeNode *left;
TreeNode *right;

oo dWMNER

151
152

153
157
160
166
167

template <typename K, typename V>

void AVI<K, D>:: insert(const K & key, const V & data, TreeNode

*& cur) {
if (cur == NULL) { cur = new TreeNode (key, data) ; }
else if (key < cur->key) { insert(key, data, cur->left); }
else if (key > cur->key) { insert(key, data, cur->right);}
_ensureBalance (cur) ;

}

119 | template <typename K, typename V>
120 | void AVL<K, D>:: ensureBalance (TreeNode *& cur) ({
121 // Calculate the balance factor:
122 int balance = height (cur->right) - height (cur->left);
123
124 // Check if the node is current not in balance:
125 if (balance == -2) {
126 int 1 balance

helght(cur ->left->right) - height(cur->left->left);
127 if (1 balance == -1) { ;)
128 else { ;o
129 } else if (balance == 2) {
130 int r balance =

height (cur->right->right) - height (cur->right->left) ;
131 if(r balance == 1) { ;)
132 else { ;)
133 }
134
135 _updateHeight (cur) ;
136},

AVL Insertion

Given an AVL is balanced, insert can insert at most one imbalance

b=1

AVL Insertion

Given an AVL is balanced, insert can insert at most one imbalance

b=2

AVL Insertion

If we insert in B, | must have a balance pattern of 2, 1

b=2

AVL Insertion

A left rotation fixes our imbalance in our local tree.

b=2

After rotation, subtree has pre-insert height. (Overall tree is balanced)

AVL Insertion

If we insertin A, | must have a balance pattern of 2, -1

b=2

=-1

A

AVL Insertion

A rightLeft rotation fixes our imbalance in our local tree.

b=2

=0

=-1

A

After rotation, subtree has pre-insert height. (Overall tree is balanced)

AVL Insertion

Theorem:
It an insertion occurred in subtrees t,

or t, and an imbalance was first

detected at t, then a
rotation about t restores the balance
of the tree.

We gauge this by noting the balance
factor of tiis and the balance
factor of t->left is

AVL Insertion

Theorem:
It an insertion occurred in subtrees t,

or t; and an imbalance was first

detected at t, then a
rotation about t restores the balance

of the tree.
A We gauge this by noting the balance
factor of tiis and the balance

factor of t->left is

AVL Insertion @

We've seen every possible insert that can cause an imbalance
Insert increases height by at most:
A rotation reduces the height of the subtree by:

A single* rotation restores balance and corrects height!

AVL Insertion Practice _insert(14)

AVL Insertion Practice _insert(14)

_remove (10)

AVL Remove

o
a°e c°

o

_remove (10)

AVL Remove
O
(5 O
OO 0

ololoNG
o

_remove (10)

AVL Remove

_remove (10)

AVL Remove

o
N e
ofolio
o

_remove (10)

AVL Remove

oflo :e

AVL Remove _remove(10) (O

Remove (pseudo code):

1: Remove at proper place
2: Check for imbalance

3: Rotate, if necessary

4: Update height

AVL Remove

AVL Remove @

An AVL remove step can reduce a subtree height by at most:
But a rotation reduces the height of a subtree by one!

We might have to perform a rotation at every level of the tree!

AVL Tree Analysis

For an AVL tree of height h:

Find runs in:

Insert runs in:

Remove runs in:

Claim: The height of the AVL tree with n nodes is:

