Data Structures AVL Trees

CS 225 September 25, 2023 Brad Solomon & G Carl Evans

Learning Objectives

Review why we need balanced trees

Review what an AVL rotation does

Explore the four possible rotations for an AVL tree

BST Analysis – Running Time

	BST Worst Case
find	O(h)
insert	O(h)
delete	O(h)
traverse	O(n)

AVL-Tree: A self-balancing binary search tree

Every node in an AVL tree has a balance of:

Left Rotation

Left Rotation

All rotations are local (subtrees are not impacted)

Left Rotation

All rotations preserve BST property

Right Rotation

AVL Rotation Practice

AVL Rotation Practice

Somethings not quite right...

LeftRight Rotation

LeftRight Rotation

RightLeft Rotation

Left and right rotation convert **sticks** into **mountains**

LeftRight (RightLeft) convert **elbows** into **sticks** into **mountains**

Four kinds of rotations: (L, R, LR, RL)

- 1. All rotations are local (subtrees are not impacted)
- 2. The running time of rotations are constant
- 3. The rotations maintain BST property

Goal:

We can identify which rotation to do using **balance**

We can identify which rotation to do using **balance**

AVL Rotation Practice

AVL vs BST ADT

The AVL tree is a modified binary search tree that rotates when necessary

```
1 struct TreeNode {
2   T key;
3   unsigned height;
4   TreeNode *left;
5   TreeNode *right;
6 };
```

How does the constraint on balance affect the core functions?

Find

Insert

Remove

AVL Find __find(7)

insert(6.5)

AVL Insertion

```
1 struct TreeNode {
2   T key;
3   unsigned height;
4   TreeNode *left;
5   TreeNode *right;
6 };
```


Insert (recursive pseudo code):

1: Insert at proper place

2: Check for imbalance

3: Rotate, if necessary

4: Update height

```
1 struct TreeNode {
2   T key;
3   unsigned height;
4   TreeNode *left;
5   TreeNode *right;
6 };
```



```
119
   template <typename K, typename V>
120
   void AVL<K, D>:: ensureBalance(TreeNode *& cur) {
121 // Calculate the balance factor:
122
    int balance = height(cur->right) - height(cur->left);
123
124
    // Check if the node is current not in balance:
125
     if (balance == -2) {
126
     int l balance =
           height(cur->left->right) - height(cur->left->left);
     if ( l balance == -1 ) {
127
128
       else
129
     } else if ( balance == 2 ) {
130
       int r balance =
            height(cur->right->right) - height(cur->right->left);
     if( r balance == 1 ) {
131
132
       else
133
134
135
    updateHeight(cur);
136
```

Given an AVL is balanced, insert can insert at most one imbalance

Given an AVL is balanced, insert can insert at most one imbalance

If we insert in B, I must have a balance pattern of 2, 1

A **left** rotation fixes our imbalance in our local tree.

After rotation, subtree has **pre-insert height**. (Overall tree is balanced)

If we insert in A, I must have a balance pattern of 2, -1

A **rightLeft** rotation fixes our imbalance in our local tree.

After rotation, subtree has **pre-insert height**. (Overall tree is balanced)

Theorem:

If an insertion occurred in subtrees t_1 or t_2 and an imbalance was first detected at t, then a _____ rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of **t is** ____ and the balance factor of **t->left** is .

Theorem:

If an insertion occurred in subtrees t_2 or t_3 and an imbalance was first detected at t, then a _____ rotation about t restores the balance of the tree.

We gauge this by noting the balance factor of **t is** ____ and the balance factor of **t->left** is ____.

We've seen every possible insert that can cause an imbalance

Insert increases height by at most:

A rotation reduces the height of the subtree by:

A single* rotation restores balance and corrects height!

AVL Insertion Practice

_insert(14)

AVL Insertion Practice

_insert(14)

An AVL remove step can reduce a subtree height by at most:

But a rotation *reduces* the height of a subtree by one!

We might have to perform a rotation at every level of the tree!

AVL Tree Analysis

For an AVL tree of height h:

Find runs in: _____.

Insert runs in: ______.

Remove runs in: ______.

Claim: The height of the AVL tree with n nodes is: ______.