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Learning Objectives
Review why we need balanced trees

Review what an AVL rotation does

Explore the four possible rotations for an AVL tree




BST Analysis — Running Time
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AVL-Tree: A self-balancing binary search tree

Every node in an AVL tree has a balance of:




Left Rotation




Left Rotation

All rotations are local (subtrees are not impacted)




Left Rotation
All rotations preserve BST property
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Right Rotation




Right Rotation

New Root
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AVL Rotation Practice




AVL Rotation Practice
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Somethings not quite right...




LeftRight Rotation




LeftRight Rotation
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RightLeft Rotation



AVL Rotations

Left and right rotation convert sticks into mountains




AVL Rotations

LeftRight (RightLeft) convert elbows into sticks into mountains
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AVL Rotations
Four kinds of rotations: (L, R, LR, RL)

1. All rotations are local (subtrees are not impacted)
2. The running time of rotations are constant

3. The rotations maintain BST property

Goal:




AVL Rotations

We can identify which rotation to do using balance
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AVL Rotations

We can identify which rotation to do using balance







AVL Rotation Practice
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AVL vs BST ADT @

The AVL tree is a modified binary search tree that rotates when necessary

struct TreeNode {
T key;
unsigned height;
TreeNode *left;
TreeNode *right;

iy

o0k WMNRKR

How does the constraint on balance affect the core functions?

Find

Insert

Remove




AVL Find
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AVL Insertion
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struct TreeNode {
T key;

unsigned height;

TreeNode *left;

TreeNode *right;
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_insert(6.5)

AVL Insertion

Insert (recursive pseudo code):

1: Insert at proper place °
2: Check for imbalance

3: Rotate, if necessary ° Q
4: Update height e a ° @

struct TreeNode ({ @ @

T key;

unsigned height;
TreeNode *left;
TreeNode *right;
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template <typename K, typename V>

void AVI<K, D>:: insert(const K & key, const V & data, TreeNode

*& cur) {
if (cur == NULL) { cur = new TreeNode (key, data) ; }
else if (key < cur->key) { insert( key, data, cur->left ); }
else if (key > cur->key) { insert( key, data, cur->right );}
_ensureBalance (cur) ;

}




119 | template <typename K, typename V>
120 | void AVL<K, D>:: ensureBalance (TreeNode *& cur) ({
121 // Calculate the balance factor:
122 int balance = height (cur->right) - height (cur->left);
123
124 // Check if the node is current not in balance:
125 if ( balance == -2 ) {
126 int 1 balance

helght(cur ->left->right) - height(cur->left->left);
127 if ( 1 balance == -1 ) { ;)
128 else { ;o
129 } else if ( balance == 2 ) {
130 int r balance =

height (cur->right->right) - height (cur->right->left) ;
131 if( r balance == 1 ) { ;)
132 else { ;)
133 }
134
135 _updateHeight (cur) ;
136},




AVL Insertion

Given an AVL is balanced, insert can insert at most one imbalance
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AVL Insertion

Given an AVL is balanced, insert can insert at most one imbalance

b=2




AVL Insertion

If we insert in B, | must have a balance pattern of 2, 1

b=2




AVL Insertion

A left rotation fixes our imbalance in our local tree.

b=2

After rotation, subtree has pre-insert height. (Overall tree is balanced)



AVL Insertion

If we insertin A, | must have a balance pattern of 2, -1
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AVL Insertion

A rightLeft rotation fixes our imbalance in our local tree.
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After rotation, subtree has pre-insert height. (Overall tree is balanced)




AVL Insertion

Theorem:
It an insertion occurred in subtrees t,

or t, and an imbalance was first

detected at t, then a
rotation about t restores the balance
of the tree.

We gauge this by noting the balance
factor of tiis and the balance
factor of t->left is




AVL Insertion

Theorem:
It an insertion occurred in subtrees t,

or t; and an imbalance was first

detected at t, then a
rotation about t restores the balance

of the tree.
A We gauge this by noting the balance
factor of tiis and the balance

factor of t->left is




AVL Insertion @

We've seen every possible insert that can cause an imbalance
Insert increases height by at most:
A rotation reduces the height of the subtree by:

A single* rotation restores balance and corrects height!




AVL Insertion Practice _insert(14)




AVL Insertion Practice _insert(14)




_remove (10)

AVL Remove
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_remove (10)

AVL Remove
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_remove (10)

AVL Remove




_remove (10)

AVL Remove
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_remove (10)

AVL Remove
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AVL Remove _remove(10) (O

Remove (pseudo code):

1: Remove at proper place
2: Check for imbalance

3: Rotate, if necessary

4: Update height




AVL Remove




AVL Remove @

An AVL remove step can reduce a subtree height by at most:
But a rotation reduces the height of a subtree by one!

We might have to perform a rotation at every level of the tree!




AVL Tree Analysis

For an AVL tree of height h:

Find runs in:

Insert runs in:

Remove runs in:

Claim: The height of the AVL tree with n nodes is:




