Data Structures
 Balanced Binary Search Trees

Department of Computer Science

Learning Objectives

Discuss the big picture problem with BSTs
Introduce the self-balancing BST

BST Analysis

Every operation on a BST depends on the height of the tree.
... how do we relate $O(h)$ to n, the size of our dataset?

BST Analysis

What is the max number of nodes in a tree of height h ?

BST Analysis

What is the $\boldsymbol{\operatorname { m i n }}$ number of nodes in a tree of height h ?

BST Analysis

A BST of n nodes has a height between:
Lower-bound: $O(\log n)$

Upper-bound: $O(n)$

Height-Balanced Tree

What tree is better?

Height balance: $b=\operatorname{height}\left(T_{R}\right)-\operatorname{height}\left(T_{L}\right)$
A tree is "balanced" if:

BST Rotations (The AVL Tree)

We can adjust the BST structure by performing rotations.

These rotations:
1.
2.

BST Rotations (The AVL Tree)

We can adjust the BST structure by performing rotations.

Left Rotation

Left Rotation

Right Rotation

Right Rotation

Coding AVL Rotations

Two ways of visualizing:

1) Think of an arrow 'rotating' around the center
2) Recognize that there's a concrete order for rearrangements

Ex: Unbalanced at current (root) node and need to rotateLeft?
Replace current (root) node with it's right child.
Set the right child's left child to be the current node's right
Make the current node the right child's left child

AVL Rotation Practice

AVL Rotation Practice

Somethings not quite right...

LeftRight Rotation

LeftRight Rotation

RightLeft Rotation

AVL Rotations

AVL Rotations

Four kinds of rotations: (L, R, LR, RL)

1. All rotations are local (subtrees are not impacted)
2. The running time of rotations are constant
3. The rotations maintain BST property

Goal:

AVL Rotation Practice

AVL vs BST ADT

The AVL tree is a modified binary search tree that rotates when necessary

How does the constraint on balance affect the core functions?
Find

Insert

Remove

AVL Find

AVL Insertion

```
struct TreeNode {
    T key;
    unsigned height;
    TreeNode *left;
    TreeNode *right;
};
```


AVL Insertion

Insert (pseudo code):

1: Insert at proper place
2: Check for imbalance
3: Rotate, if necessary
4: Update height

```
struct TreeNode {
    T key;
    unsigned height;
    TreeNode *left
    TreeNode *right;
};
```


Rebalancing on insert

Theorem:

If an insertion occurred in subtrees $\mathrm{t}_{\mathbf{3}}$ or \mathbf{t}_{4} and an imbalance was first detected at \mathbf{t}, then a \qquad rotation about \mathbf{t} restores the balance of the tree.

We gauge this by noting the balance factor of t is ___ and the balance factor of t->right is \qquad .

Rebalancing on insert

Theorem:

If an insertion occurred in subtrees $\mathbf{t}_{\mathbf{1}}$ or $\mathbf{t}_{\mathbf{2}}$ and an imbalance was first detected at \mathbf{t}, then a \qquad rotation about \mathbf{t} restores the balance of the tree.

We gauge this by noting the balance factor of t is ___ and the balance factor of t->left is \qquad .

Rebalancing on insert

Theorem:

If an insertion occurred in subtrees t_{2} or $\mathbf{t}_{\mathbf{3}}$ and an imbalance was first detected at \mathbf{t}, then a \qquad rotation about \mathbf{t} restores the balance of the tree.

We gauge this by noting the balance factor of t is \qquad and the balance factor of t->right is \qquad .

Rebalancing on insert

Theorem:

If an insertion occurred in subtrees t_{2} or t_{3} and an imbalance was first detected at \mathbf{t}, then a \qquad rotation about \mathbf{t} restores the balance of the tree.

We gauge this by noting the balance factor of t is \qquad and the balance factor of t->left is \qquad .

Rebalancing on insert

AVL Insertion Practice

