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Office Hour Space Changes

Construction in the basement space began Thursday

Currently unclear how much space will remain

For now OH will remain online in the basement…

But keep an eye on your email / Discord!



Learning Objectives

Discuss the big picture problem with BSTs

Introduce the self-balancing BST

Briefly review BST review



template<typename K, typename V>


void _remove(TreeNode *& root, const K & key) {


}
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BST Remove

What will the tree structure look like if we remove node 16 using IOS?
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BST Analysis

Every operation on a BST depends on the height of the tree.

… how do we relate  to , the size of our dataset?O(h) n



BST Analysis

What is the max number of nodes in a tree of height  ?h



BST Analysis

What is the min number of nodes in a tree of height  ?h



BST Analysis

A BST of  nodes has a height between:n

Lower-bound: O(log n)

Upper-bound: O(n)
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Height-Balanced Tree
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What tree is better?

Height balance: b = height(TR) − height(TL)

A tree is “balanced” if: 



Option A: Correcting bad insert order
The height of a BST depends on the order in which the data was inserted

Insert Order: [1, 3, 2, 4, 5, 6, 7]

Insert Order: [4, 2, 3, 6, 7, 1, 5]



AVL-Tree: A self-balancing binary search tree
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Rather than fixing an insertion order, just correct the tree as needed!



BST Rotations (The AVL Tree)

These rotations:

1.

2.

We can adjust the BST structure by performing rotations.

(CORRECT)



BST Rotations (The AVL Tree)
We can adjust the BST structure by performing rotations.
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Left Rotation
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Right Rotation

13

10 25

12 37

38

51



Right Rotation
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Coding AVL Rotations
Two ways of visualizing: 

1) Think of an arrow ‘rotating’ around the center 

51

84

89

A

B

C D2) Recognize that there’s a concrete order for rearrangements

Ex: Unbalanced at current (root) node and need to rotateLeft? 

Replace current (root) node with it’s right child. 

Set the right child’s left child to be the current node’s right

Make the current node the right child’s left child



AVL Rotation Practice
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AVL Rotation Practice
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Somethings not quite right…


