
Department of Computer Science

Data Structures
Balanced Binary Search Trees

September 22, 2023
CS 225

Brad Solomon & G Carl Evans

Office Hour Space Changes

Construction in the basement space began Thursday

Currently unclear how much space will remain

For now OH will remain online in the basement…

But keep an eye on your email / Discord!

Learning Objectives

Discuss the big picture problem with BSTs

Introduce the self-balancing BST

Briefly review BST review

template<typename K, typename V>

void _remove(TreeNode *& root, const K & key) {

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
 1

63

5

4 7

BST Remove

What will the tree structure look like if we remove node 16 using IOS?

6

5

3

8

11

9 16

1814

21
121

BST Analysis

Every operation on a BST depends on the height of the tree.

… how do we relate to , the size of our dataset?O(h) n

BST Analysis

What is the max number of nodes in a tree of height ?h

BST Analysis

What is the min number of nodes in a tree of height ?h

BST Analysis

A BST of nodes has a height between:n

Lower-bound: O(log n)

Upper-bound: O(n)
5

1

6

5

1

6

Height-Balanced Tree

95

7

7

5

9

What tree is better?

Height balance: b = height(TR) − height(TL)

A tree is “balanced” if:

Option A: Correcting bad insert order
The height of a BST depends on the order in which the data was inserted

Insert Order: [1, 3, 2, 4, 5, 6, 7]

Insert Order: [4, 2, 3, 6, 7, 1, 5]

AVL-Tree: A self-balancing binary search tree

84

51 89

A B C D

13

10 25

38

51

84

89

A

B

C D

Rather than fixing an insertion order, just correct the tree as needed!

BST Rotations (The AVL Tree)

These rotations:

1.

2.

We can adjust the BST structure by performing rotations.

(CORRECT)

BST Rotations (The AVL Tree)
We can adjust the BST structure by performing rotations.

13

10 25

12 37

38

51

40 84

8966

95

13

10 25

38

51

84

89

A

B

C D

Left Rotation

84

51 89

A B C D

13

10 25

38

51

84

89

A

B

C D

Left Rotation

Right Rotation

13

10 25

12 37

38

51

Right Rotation

13

10 25

12 37

38

51

10

12 25

37

13

38

51

Coding AVL Rotations
Two ways of visualizing:

1) Think of an arrow ‘rotating’ around the center

51

84

89

A

B

C D2) Recognize that there’s a concrete order for rearrangements

Ex: Unbalanced at current (root) node and need to rotateLeft?

Replace current (root) node with it’s right child.

Set the right child’s left child to be the current node’s right

Make the current node the right child’s left child

AVL Rotation Practice

13

10 25

37

38

51

AVL Rotation Practice

13

10 25

37

38

51 10

25

37

13

38

51

Somethings not quite right…

