Data Structures Binary Search Trees 2

CS 225 September 20, 2023 Brad Solomon & G Carl Evans

Learning Objectives

Review binary search trees

Continue implementing BST ADT

Discuss pros and cons of BST (and possible improvements)

Improved search on a binary tree

Dictionary ADT

Data is often organized into key/value pairs:

```
Word → Definition

Course Number → Lecture/Lab Schedule

Node → Incident Edges

Flight Number → Arrival Information

URL → HTML Page
...
```

Binary Search Tree (BST)

A **BST** is a binary tree $T = TreeNode(val, T_L, T_r)$ such that:

$$\forall n \in T_L, n.val < T.val$$

$$\forall n \in T_R, n.val > T.val$$

remove (40)

remove (25)

remove (13)

remove (51)

What will the tree structure look like if we remove node 16 using IOS?

BST Analysis – Running Time

Operation	BST Worst Case
find	
insert	
remove	
traverse	

Limiting the height of a tree

Option A: Correcting bad insert order

The height of a BST depends on the order in which the data was inserted

Insert Order: [1, 3, 2, 4, 5, 6, 7]

Insert Order: [4, 2, 3, 6, 7, 1, 5]

AVL-Tree: A self-balancing binary search tree

Rather than fixing an insertion order, just correct the tree as needed!

