Data Structures

C++ Review

CS 225 August 23,2023
Brad Solomon & G Carl Evans

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Do you want to do research?
e Come apply to PURE!

Promoting Undergraduate Research in Engineering

4

Benefits:

v | Research experience

v | Networking

v | Soft and hard skill development

v | 1 credit hour + GPA boost

Scan for:
v | Resume Booster
— e Interest form
o’i e Website
%f"mm%\@\ ® DlSCOrd a

(Optional) Open Lab This Week

This week’s lab is open office hours
Focus is making sure your machine is setup for semester

Installation information available on website

-0
o)

)

Exam 0 (August 29 — 31) @

https://courses.engr.illinois.edu/cs225/fa2023/exams/

An introduction to CBTF exam environment / expectations
Quiz on foundational knowledge from all pre-reqgs
Practice questions can be found on PL

Registration starts August 24

https://courses.engr.illinois.edu/cs225/fa2023/exams/

Learning Objectives

A brief high level review of C++
Fundamentals of Classes
The Rule of Three
Memory management
Function parameters and const
Templates

Introduce Abstract Data Types (ADT)

Encapsulation - Classes

i :

¥ TR YA TR O

= |7
1)
=
=
=)
=

A

‘vw..

Drafting a’Library’class

class Library ({
public:

WoJdJdoouUid WDNPR

15| private:

Class Funhdamentals

Constructor

Destructor

Class Fundamentals

Does our library class need a destructor?

The Rule of Three

If it is necessary to define any one of these three functions in a class,
it will be necessary to define all three of these functions:

1.

OoodJoouldkd WPNRE

MNMNMNMMMMNNDSDEREFRRRRRPRRRRR
b WMNROCOVOJdJONOUILEd_WMNEO

class Library ({
public:
int numBooks;
std: :string * titles;
~Library () ;
Library(int num, std::string* list);

};

Library: :~Library () {
delete titles;
titles = nullptr;

}

Library: :Library(int num, std::string* list) {
numBooks = inNum;
titles = new std::string[inNum];
std: :copy(inList, inList + inNum, titles);
}

int main () {
std: :string myBooks[3] = {"A", "B", "C"};
Library L1(3, myBooks);
Library L2(L1);
return O;

OoodJoouldkd WPNRE

MNMNMNMMMMNNDSDEREFRRRRRPRRRRR
b WMNROCOVOJdJONOUILEd_WMNEO

class Library ({
public:
int numBooks;
std: :string * titles;
~Library () ;
Library(int num,

};

Library: :~Library () {

delete titles;
titles = nullptr;
}
Library: :Library(int num, std::string* list) {
numBooks = inNum;
titles = new std::string[inNum];

std: :copy(inList, inList + inNum,

}

int main () {
std: :string myBooks[3] = {"A",
Library L1(3, myBooks) ;
Library L2(L1);
return O;

"B" ,

Whats wrong with this code?
A. Can't create L2 Library obj

B. Don't delete either Library
C. Deleting L1 deletes L2

std: :string* list);

titles);

"C" } ,.

‘The Rule of Zero' @

If you define a destructor, copy, or assignment operator,
you should define all three!

Implicit default operators are generated otherwise.

Tip: If you can, avoid writing these operators at all!

Memory Management

Stack

Heap

Global

Reference and Dereference

WoJdJdoouUid WDNPR

int a

= 3:
int b =5

int *p = &a;
int &r = b;
cout << p <<

cout < r L

pt+;
r++;

cout << a <
cout << p <<

cout < r L

" " <L *p << endl;

endl;

" " KL b <KL endl;
" " K<L *p << endl;

endl;

Reference (&)

Dereference (¥)

Memory Management - Parameters

Value

Value — Pointer

Reference

Memory Management - Parameters

class Library {
public:
int numBooks;
std: :string * titles;

};

WoJdJdoouUid WDNPR

// *** Function A **x*
std: :string getFirstBook (Library 1) {
return (l.numBooks > 0) ? l.titles[0] : "None";

12}

14|// *** Function B ***
15| std: :string getFirstBook (Library * 1) {
16 return (1->numBooks > 0) ? 1l->titles[0] : "None";

18}

20| // *** Function C ***
21| std: :string getFirstBook (Library & 1) {

22 return (l.numBooks > 0) ? l.titles[0] : "None";
23
}

Memory Management @
Local memory on the stack is managed by the computer
Heap memory allocated by new and freed by delete

Understand when and how to use reference (&) and
dereference (*) operators

Tip: If you can, avoid using new at all!

Memory Management

You are building a search tool over a collection of very large image
files. One operation you want is to search an image for a particular
pixel pattern (and return whether it exists or not). Assuming the query
pattern and the input image are both of type Image, what might our
function header look like?

The Const Keyword

Const means that an object cannot be modified

Variables
Pointers

Reference

Method

Pointer-to-constant vs constant pointer

int x =
int y = 2;

// * % % A %* % %
const int* a = &x;

3;
2

a = &y;

WoJdJdoouUid WDNPR

[/ **k*x B kkx
const int* b = &x;

13| *b = y;

15| // *%*x C ***
int* const c = &x;

21| /) ***x D *kx
22| int* const d = &x;

*d:y;

Const pointers vs const methods

1| struct BlackBox {

2 void update (const int & obj) {
2 myVal = obj;

5 ;

6 obj++;

7 }

8

13 void update (int & obj) const {
11 myVal = obj;

12

13 obj++;

14 }

15

13 void update (const int & obj) const {
18 myVal = obj;

19

20 Obj++;

21 }

22

23 int myVal;

24| .

25 } !

(Vg
Q
e
O
Q.
5
—

templatel.cpp

T maximum(T a, T b) {
T result;
result = (a > b) ? a : b;
return result;

SNSoobkd WN R

}

List Abstract Data Type

A list is an ordered collection of items
Items can be either heterogeneous or homogenous

The list can be of a fixed size or is resizable

What types of “stuff” do we want in our list?

A list is an ordered collection of it

