Ci’ 2\5 #41: Single Source Shortest Path
Shortest Path: g o e

a9

Dijkstra’s Algorithm (Single Source Shortest Path)

Dijkstra’s Algorithm Overview:

The overall logic is the same as Prim’s Algorithm

We will modify the code in only two places — both involving
the update to the distance metric.

The result is a directed acyclic graph or DAG

Pseudocode for Dijkstra’s SSSP Algorithm

CodJoubd WNR

DijkstraSSSP (G, s):
Input: G, Graph;
s, vertex in G, starting vertex of algorithm
Output: T, DAG w/ shortest paths (and distances) to s

foreach (Vertex v : G.vertices()):

d[v] = +inf
plv] = NULL
d[s] =0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap (G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex m = Q.removeMin ()

T.add (m)
foreach (Vertex v : neighbors of m not in T):
if < d[v]:
d[v] =
plvl =m
return T

Dijkstra: One heavy-weight edge vs. faster light-weight edges?

H)

1




Dijkstra: One medium-weight edge vs. many light-weight edges?

Dijkstra: What if we have a minimum-weight edge, without having a
negative-weight cycle?

...what assumption does Dijkstra’s algorithm make?

Dijkstra: What is the running time?

Landmark Path Problem: Best path to G from A, stopping at L
along the way?




