cizzxs #39: MSTs: Kruskal + Prim’s Algorithm
Kruskal’s Algorithm
Pseudocode for Kruskal’s MST Algorithm
1 | KruskalMST (G) :
2 DisjointSets forest
3 foreach (Vertex v : G.vertices()):
4 forest.makeSet (v)
5
6 PriorityQueue Q // min edge weight
7 Q.buildFromGraph (G.edges ())
8
9 Graph T = (V, {})
10
11 while |T.edges()| < n-1:
12 Vertex (u, v) = Q.removeMin ()
13 if forest.find(u) != forest.find(v):
14 T.addEdge (u, v)
15 forest.union(forest.find(u),
16 forest.find(v))
17
18 return T
19

Reflections
Why would we prefer a Heap?

Why would be prefer a Sorted Array?

Kruskal’s Running Time Analysis
We have multiple choices on which underlying data structure to use to
build the Priority Queue used in Kruskal’s Algorithm:

Priority Queue

Implementations: | Heap Sorted Array

Building
27

Each removeMin
:12

Based on our algorithm choice:

Priority Queue

Implementation: | Total Running Time

Heap

Sorted Array

Partition Property
Consider an arbitrary partition of the vertices on G into two subsets U
and V.

Let e be an edge of /
minimum weight across

the partition. /

Then e is part of some
minimum spanning tree.

Proofin CS 374!

Partition Property Algorithm

(B)
2 o ——
5 49)
(A)
13 |
17 11 |5
©—23 @ 10 |
16 (E) e
9 \ </
12 o
16
& 4 (G)

Prim’s Minimum Spanning Tree Algorithm

Running Time of MST Algorithms

Kruskal’s Algorithm:

Prim’s Algorithm:

Q: What must be true about the connectivity of a graph when running
an MST algorithm?

...what does this imply about the relationship between n and m?

Kruskal’s MST Prim’s MST

Q: Suppose we built a new heap that optimized the decrease-key
operation, where decreasing the value of a key in a heap updates the
heap in amortized constant time, or O(1)*. How does that change
Prim’s Algorithm runtime?

(®)
15
2
/ (C)
- 5 4
(A) 13 \
17 | |11
16 ©——@
9
12
(F)
Pseudocode for Prim’s MST Algorithm
1 | PrimMST (G, s):
2 Input: G, Graph;
3 s, vertex in G, starting vertex of algorithm
4 Output: T, a minimum spanning tree (MST) of G
5
6 foreach (Vertex v : G.vertices()):
7 d[v] = +inf
8 plv] = NULL
9 d[s] =
10
11 PriorityQueue Q // min distance, defined by d[v]
12 Q.buildHeap (G.vertices())
13 Graph T // "labeled set"
14
15 repeat n times:
16 Vertex m = Q.removeMin ()
17 T.add (m)
18 foreach (Vertex v : neighbors of m not in T):
19 if cost(v, m) < d[v]:
20 d[v] = cost(v, m)
21 plvl = m
22
23 return T
Adj. Matrix Adj. List
Heap

Unsorted Array

Final big-O Running Times of classical MST algorithms:

Kruskal’s MST Prim’s MST

