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Vertex Collection:
Data Structures:
Edge Collection:
Operations on an Edge List implementation: Operations on an Adjacency Matrix implementation:
insertVertex(K key): insertVertex(K key):
- What needs to be done? - What needs to be done?
removeVertex(Vertex v): removeVertex(Vertex v):
- What needs to be done? - What needs to be done?
incidentEdges(Vertex v): incidentEdges(Vertex v):
- What needs to be done? - What needs to be done?
areAdjacent(Vertex v1, Vertex v2): areAdjacent(Vertex v1, Vertex v2):
- Can this be faster than G. incidentEdges (v1) .contains (v2) ? - Can this be faster than G. incidentEdges (v1) .contains (v2)?
insertEdge(Vertex v1, Vertex v2, K key): insertEdge(Vertex v1, Vertex v2, K key):

- What needs to be done? - What needs to be done?



Graph Implementation #3: Adjacency List
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Operations on an Adjacency Matrix implementation:
insertVertex(K key):

removeVertex(Vertex v):

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

insertEdge(Vertex v1, Vertex v2, K key):

Edge List Adj. Matrix Adj. List
Space n+m n2 n+m
insertVertex 1 n 1
removevertex m n deg(v)
insertEdge 1 1 1
removeEdge m 1 1
incidentEdges m n deg(v)
areAdjacent m 1 mi;;(g((i‘(/ag()v ),

Q: If we consider implementations of simple, connected graphs, what
relationship between n and m?

- On connected graphs, is there one algorithm that underperforms the
other two implementations?

Q: Is there clearly a single best implementation?

- Optimized for fast construction:

- Optimized for areAdjacent operations:




