Graph Implementation #2: Adjacency Matri
cizzxs #36: Graph Implementation P P J 4 X

Graph Implementation #1: Edge List a c
Vert. | Edges b d

O, O W @
u a a C
v b / b \ d Vert. | Edges Adj. Matrix
W C (N
Y/ d @ W @ u a P ulvw]|z
v b u
w c v
Data Structures: z d w
z
Vertex Collection:
Data Structures:
Edge Collection:
Operations on an Edge List implementation: Operations on an Adjacency Matrix implementation:
insertVertex(K key): insertVertex(K key):
- What needs to be done? - What needs to be done?
removeVertex(Vertex v): removeVertex(Vertex v):
- What needs to be done? - What needs to be done?
incidentEdges(Vertex v): incidentEdges(Vertex v):
- What needs to be done? - What needs to be done?
areAdjacent(Vertex v1, Vertex v2): areAdjacent(Vertex v1, Vertex v2):
- Can this be faster than G. incidentEdges (v1) .contains (v2) ? - Can this be faster than G. incidentEdges (v1) .contains (v2)?
insertEdge(Vertex v1, Vertex v2, K key): insertEdge(Vertex v1, Vertex v2, K key):

- What needs to be done? - What needs to be done?



Graph Implementation #3: Adjacency List

Running Times of Classical Graph Implementations

Vertex List Edges
u a
v b
w c
z d

Operations on an Adjacency Matrix implementation:
insertVertex(K key):

removeVertex(Vertex v):

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

insertEdge(Vertex v1, Vertex v2, K key):

Edge List Adj. Matrix Adj. List
Space n+m n2 n+m
insertVertex 1 n 1
removevertex m n deg(v)
insertEdge 1 1 1
removeEdge m 1 1
incidentEdges m n deg(v)
areAdjacent m 1 mi;;(g((i‘(/ag()v ),

Q: If we consider implementations of simple, connected graphs, what
relationship between n and m?

- On connected graphs, is there one algorithm that underperforms the
other two implementations?

Q: Is there clearly a single best implementation?

- Optimized for fast construction:

- Optimized for areAdjacent operations:




