

# #31: Bloom Filters

A bloom filter consists of:

1.

2.

### **Bloom Filter: Insertion**

Example:  $S = \{ 16, 8, 4, 13, 29, 11, 22 \}, |S| = n$ h(k) = k % 7, |Array| = N

| [0] |  |
|-----|--|
| [1] |  |
| [2] |  |
| [3] |  |
| [4] |  |
| [5] |  |
| [6] |  |

## **Bloom Filter: Deletion**

Bloom filters do not support the deletion operation because:

### **Bloom Filter: Search**

With h(k) = k % 7, find(16), find(20), find(3)

| [0] | 0 |
|-----|---|
| [1] | 1 |
| [2] | 1 |
| [3] | 0 |
| [4] | 1 |
| [5] | 0 |
| [6] | 1 |

# **Probabilistic Accuracy**

What are the four possible outcomes for a probabilistic function?

1.

2.

3.

4.

Which outcome can a bloom filter NOT have?

## **Bloom Filter: Repeated Trial Insertion**

Example:  $S = \{ 16, 8, 4, 13, 29, 11, 22 \}$  $h_1(x) = x \% 10, h_2(x) = 2x \% 10, h_3(x) = (5+3x) \% 10$ 

Given k hashes and a bit vector of length m, what is the run time for insert and find:

#### **False Positive Rate**

What is the expected false positive rate in terms of k (hashes), m (bit vector length), and n (number of inserted items)?

## **Optimal Bloom Filters**

What equation describes the relationship between m bits, n items, and k hashes for an optimal bloom filter?

# **Combining bloom filters**

Given the following bloom filters, write a bloom filter which 'contains' all the items present in both filters.

| [0] | 0 | [0] | 0 | [0] |  |
|-----|---|-----|---|-----|--|
| [1] | 1 | [1] | 1 | [1] |  |
| [2] | 1 | [2] | O | [2] |  |
| [3] | 0 | [3] | 0 | [3] |  |
| [4] | 1 | [4] | 1 | [4] |  |
| [5] | 0 | [5] | 1 | [5] |  |
| [6] | O | [6] | O | [6] |  |

Given the same bit vectors, write a filter which 'contains' only items that are present in both filters.