CS ₂	#20: BTree Analysis	
(2)		

BTree Properties

For a BTree of order **m**:

- 1. All keys within a node are ordered.
- 2. All leaves contain no more than **m-1** nodes.
- 3. All internal nodes have exactly **one more children than keys**.
- 4. Root nodes can be a leaf or have [2, m] children.
- 5. All non-root, internal nodes have [ceil(m/2), m] children.
- 6. All leaves are on the same level.

DTwoo	1 -	1	•
BTree	Alla	шуs	12

The height of the BTree determines maximum number of _____ possible in search data.

...and the height of our structure:

Therefore, the number of seeks is no more than: _____.

...suppose we want to prove this!

BTree Proof #1

In our AVL Analysis, we saw finding an **upper bound** on the height (\mathbf{h} given \mathbf{n} , aka $\mathbf{h} = \mathbf{f}(\mathbf{n})$) is the same as finding a **lower bound** on the keys (\mathbf{n} given \mathbf{h} , aka $\mathbf{f}^{-1}(\mathbf{h})$).

Goal: We want to find a relationship for BTrees between the number of keys (**n**) and the height (**h**).

BTree Strategy:

- 1. Define a function that counts the minimum number of nodes in a BTree of a given order.
 - a. Account for the minimum number of keys per node.

2. Proving a minimum number of nodes provides us with an upper-bound for the maximum possible height.

Proof:

1a. The minimum number of $\underline{\text{nodes}}$ for a BTree of order \mathbf{m} at each level is as follows:

root:
level 1:
level 2:
level 3:
...
level h:

1b. The minimum total number of nodes is the sum of all levels:

2. The minimum number of keys:

3. Finally, we show an upper-bound on height:

So, how good are BTrees?Given a BTree of order 101, how much can we store in a tree of height=4?

Minimum:

Maximum: