CcS 2 kd-Tree Motivation:
Y | B kd-Trees First, let’s try and divide our space up:

Range-based Searches: .
Q: Consider points in 1D: p = {ps, P2, .., Pu}- g
...what points fall in [11, 42]? o
Py
[}
Ps Y
< LO—C £ & LO—C & = Ps °
3 6 11 33 a1 a4 55 P

Tree Construction: .
kd-Tree Construction:

How many dimensions exist in our input space?

How do we want to “order” our dimensions?

[]
P2 PYPY
Ps Pg
Range-based Searches: :
1
[]
Ps °
Ps []
Pz
Running Time:
Motivation

. . : 0
Extending to k-dimensions: Can we always fit our data in main memory?

Consider points in 2D: p = {P1, P2y «-+s Pn}: Where else do we keep our data?

R ...what points are inside a range (rectangle)?
P2 oo ...what is the nearest point to a query point q?
Ps Pg
[]
Py
[]
Ps PY
Pa °
Py

