

#16: AVL Analysis

## **AVL Insertion**



## **AVL Removal**



## **Running Times:**

|        | AVL Tree |
|--------|----------|
| find   |          |
| insert |          |
| remove |          |

## **Motivation:**

Big-O is defined as:

Let **f(n)** describe the height of an AVL tree in terms of the number of nodes in the tree (**n**). Visually, we can represent the big-O relation:



 $f(n) \le c \times g(n)$ : Provides an upper bound:

The height of the tree, f(n), will always be <u>less than</u>  $\mathbf{c} \times \mathbf{g}(n)$  for all values where  $\mathbf{n} > \mathbf{k}$ .

 $f^{-1}(h) \ge c \times g^{-1}(h)$ : Provides a lower bound:

The number of nodes in the tree,  $\mathbf{f}^{1}(\mathbf{h})$ , will always be greater than  $\mathbf{c} \times \mathbf{g}^{-1}(\mathbf{h})$  for all values where  $\mathbf{n} > \mathbf{k}$ .

| <b>Plan of Action:</b> Goal: Find a function that defines the lower bound on <b>n</b> given <b>h</b> .                     | Proving our IH:                                    |               |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------|
| Given the goal, we begin by defining a function that describes the smallest number of nodes in an AVL of height <b>h</b> : |                                                    |               |
|                                                                                                                            |                                                    |               |
|                                                                                                                            |                                                    |               |
|                                                                                                                            | V. Using a proof by induction, we have shown that: |               |
|                                                                                                                            |                                                    |               |
|                                                                                                                            | and by inverting our finding:                      |               |
| Theorem: An AVL tree of height <b>h</b> has at least                                                                       |                                                    |               |
| I. Consider an AVL tree and let <b>h</b> denote its height.                                                                |                                                    |               |
| II. Case:                                                                                                                  | Summary of Balanced BSTs: Advantages               | Disadvantages |
|                                                                                                                            |                                                    |               |
| III. Case:                                                                                                                 |                                                    |               |
|                                                                                                                            |                                                    |               |
| <b>IV.</b> Case:                                                                                                           |                                                    |               |
| Inductive hypothesis (IH):                                                                                                 |                                                    |               |