
Lab_dict: Devious Dictionaries
Lab #12: April 20 – April 24, 2022

Welcome to Lab Dictionaries!
Course Website: https://courses.engr.illinois.edu/cs225/sp2022/assignments/

Overview
You have already seen how to implement many interesting data
structures, in this lab we’ll be using dictionary types in the
Standard Template Library (STL) to solve some puzzle problems
that might come up in your future technical interviews!

Memoization Dynamic Programming:
Memoization is a dynamic programming technique that refers to
the process of caching previously calculated results in some sort of
data structure, so that when the computation needs to be run again
with the same inputs, the value can simply be looked up. This
process results in a large speedup for problems that have expensive
computation and that can be broken down into subproblems that
could be reused to compute the larger problem.

Exercise 1.1: Suppose you are given the set of positive integers: E = {1, 2, 5, 7,
11, 18, 25, 300}
Your client gives you an input positive integer S, and asks you to select one or
more numbers from the above set such that their sum = S. You may select
the same number from your set multiple times. Notice that since we
have a 1 in our set, the client’s request can always be satisfied by choosing 1 S
times; although this isn’t the most efficient/clever way. Write pseudocode for a
function expectedSum(S) that returns a list of numbers from E (with
repetition) that sum to S. This can be as naive or sophisticated as you like:

Exercise 1.2: Now suppose your client gives you a sequence of 10 million
such inputs: 𝑠1 < 𝑠2 < 𝑠3 <. . . < 𝑠10 mill (for simplicity, assume 𝑠1 > 𝑚𝑎𝑥(𝐸))

How can we speed up our calculations? Since the input sequence is increasing,
can we use the solution for 𝑠i to calculate the solution for 𝑠i+1?

One possible solution:

Let R=S, and result = [] 

Start from the largest number in E (300) going down the

list, and repeat until R=0: 

Find the largest coefficient c such that: c*300 <= R 

Append (c, 300) to result, and update R -= c*300 

Move to next largest number: 25

What we want to do here is slowly build up a virtual “memory” where

we keep track of the sums already calculated and how they were

calculated.

One possible way to do this is: Keep an expanding list of these sums

memory=[] , appending each s_i to it after its been calculated. We

can keep a corresponding list C =[] to save “how” each s_i in memory

was obtained i.e. C=[...,[(2, 300), (1, 25)],...] where [(2, 300),

(1, 25)] is the entry for how to obtain 625. We initialize memory

and C to: memory = [1, 2, 5, 7, 11, 18, 25, 300] C =

[(1,1),(1,2),(1,5),(1,7),(1,11),(1,18),(1,25),(1,300)]

The way that this will speed up our solution for 1.2 is that for any

s_i we will be able to consult memory and use the entries there to

try to build up the sum for it; and not be restricted by just the

numbers in E. For example, since we already know how to make 625:

[(2, 300), (1, 25)] and since we save it in memory, if we have an

input 1250 we can easily see that that is: 2*625 without redoing the

work we did for 625.

Dictionaries:
You have already seen how to implement dictionaries using hash
tables in lab_hash, when we stored different <Key, Value> pairs in
the hash table. We also used tree-based structures to implement
dictionaries. In C++, std::map is a tree-based implementation of a
dictionary, while std::unordered_map uses a hash table
implementation as the underlying structure.

main.cpp

1 struct Student {
2 string name;
3 int uin;
4 int year;
5 string major;
6 };

Exercise 2: Suppose that there are 40 000 undergraduate students
in our UIUC database. Each student object has a name (first last), uin,
year (1 through 4), and major (“CS”, “ME”, “ECE”, etc.). Look at the
Student struct above for reference.
The student objects are currently stored in the database in no
particular order. We would like to be able to answer questions such as:
“How many sophomores are in CS?” or “How many ECE students are
graduating this year?”
How would you use dictionaries to answer such questions quickly and
efficiently without having to comb through all 40 000 records in the
database?

In the programming part of this lab, you will complete the following
functions/classes:
● In fib.cpp, implement fib() and memoized_fib()

○ Look at fac.cpp for inspiration.
● In the CommonWords class implement the

following functions:
○ init_file_word_maps() - file_word_maps holds a

map for each file. Each map associates a word in that
file to the number of times it has been seen in that file.

○ init_common() - common maps a word to the
number of documents that word appears in

○ get_common_words()
■ There are several ways to solve the

get_common_words() problem
■ Try to discuss your approach with your TA/CA!

● For the Pronunciation Puzzler class:
○ The purpose is to find words such that the word itself,

the word with its first character, and the word with its
second character removed are all homophones.

■ Example: wrack, and rack
○ homophones()

■ Determines whether two words are
homophones.

○ cartalk_puzzle()
● For the Anagram class:

○ Implement both constructors.
○ get_anagrams() and get_all_anagrams()

■ Think about how you would set anagrams to
map to the same location in a dictionary.

■ What do two words that are anagrams have in
common?

As your TA and CAs, we’re here to help with your
programming during the Virtual Office Hours! ☺

One possible solution:

We organize all 40 000 students in a nested dictionary structure,

the first key can be the student’s major; so students who have the

same major are grouped under the same dictionary entry. The value

of each entry is another dictionary, this time with the student’s

year as key; thus students with the same major AND year will be

grouped together. The value for this inner dictionary can be a

list of the student names. To visualize this: 

{CS: {1: [Alice, Bob, Charlie, ...];

 2: [Dawn, Ema, ...];

 3: [Genna, ...];

 4: [Hana, ...];}

ECE: {1: [Jordi, ...]; 2: [Mariam, ...]; 3: ...; 4: ...;}

ME:

}

