
Department of Computer Science

String Algorithms and Data Structures

CS 199-225
Brad Solomon

September 26, 2022

Boyer-Moore

Exact Pattern Matching w/ Z-algorithm

Pattern, P Text, T

Find instances of P in T

‘instances’: An exact, full length copy

Z-Algorithm ≈ θ(|P | + |T |)Naive ≈ θ(|P | |T |)

Why continue?

The Z-algorithm is:

The Z-algorithm is: timeO(|P | + |T |)

An alphabet-independent solution

The Z-algorithm is less good at:

Searching for a set of patterns (Aho-Corasick)

Running in sub-linear* time (Boyer-Moore)

* — in practice, not theory

Exact pattern matching w/ Boyer-Moore

Boyer Moore preprocesses the pattern

T

P

Boyer-Moore

Preprocess

Find instances of P in T

‘instances’: An exact, full length copy

≈ O(|P | + |T |)
≈ O(|P |)

Boyer-Moore

Intuition: Learn from alignments to avoid others

c a r l c a r r i e d t h e c a tT:

P: c a t

What does this alignment tell us?

0 1 2 3 4 5 6 7 8 9 …
c a t

Boyer-Moore

Intuition: Learn from alignments to avoid others

c a r l c a r r i e d t h e c a tT:

P: c a t

What does this alignment tell us?

0 1 2 3 4 5 6 7 8 9 …
c a t

car
cat

1) Our pattern doesn’t match at this alignment

There is no ‘r’ in
‘cat’!

Boyer-Moore

Intuition: Learn from alignments to avoid others

c a r l c a r r i e d t h e c a tT:

P: c a t

What does this alignment tell us?

0 1 2 3 4 5 6 7 8 9 …
c a t

car
cat

2) Our pattern doesn’t match at later alignments

There is no ‘r’ in
‘cat’!

Boyer-Moore

Intuition: Learn from alignments to avoid others

c a r l c a r r i e d t h e c a tT:

P: c a t

What does this alignment tell us?

c a t

car
cat

2) Our pattern doesn’t match at later alignments

There is no ‘r’ in
‘cat’!

0 1 2 3 4 5 6 7 8 9 …

Boyer-Moore

Intuition: Learn from alignments to avoid others

What does this alignment tell us?

car
cat

2) Our pattern doesn’t match at later alignments

There is no ‘r’ in
‘cat’!

 c a t
 c a t

skip!
skip!

c a r l c a r r i e d t h e c a tT:

P: c a t

c a t

T h e r e w o u l d h a v e b e e n a …T:

P: w o r d

0 1 2 3 4 5 6 7 8 9 …
w o r d

Boyer-Moore

Intuition: Learn from alignments to avoid others

T h e r e w o u l d h a v e b e e n a …T:

P: w o r d

woul
word

1) Our pattern doesn’t match at this alignment

0 1 2 3 4 5 6 7 8 9 …
w o r d

T:
P:

Boyer-Moore

Intuition: Learn from alignments to avoid others

T h e r e w o u l d h a v e b e e n a …T:

P: w o r d

woul
word

0 1 2 3 4 5 6 7 8 9 …

T:
P:

How many alignments can we skip?

There is no ‘u’ in
‘word’!

2) Our pattern doesn’t match at later alignments

Boyer-Moore

Intuition: Learn from alignments to avoid others

w o r d

T h e r e w o u l d h a v e b e e n a …T:

P: w o r d

woul
word

T:
P:

There is no ‘u’ in
‘word’!

2How many alignments can we skip?

2) Our pattern doesn’t match at later alignments

0 1 2 3 4 5 6 7 8 9 …

Boyer-Moore

Intuition: Learn from alignments to avoid others

w o r d

T h e r e w o u l d h a v e b e e n a …T:

P: w o r d

T:
P:

There is no ‘u’ in
‘word’!

2) Our pattern doesn’t match at later alignments

 w o r d
 w o r d
 w o r d

skip!
skip!

2How many alignments can we skip?

woul
word

Boyer-Moore

Intuition: Learn from alignments to avoid others

w o r d

G T A G A T G G C T G A T C G A G T A G C G G C GT:

P: T A G A C

TAGAT

TAGAC

 T A G A C

There IS a T in
‘TAGAC’!

How many alignments can we skip? 3

Boyer-Moore

Intuition: Learn from alignments to avoid others

G T A G A T G G C T G A T C G A G T A G C G G C GT:

P: T A G A C

TAGAT

TAGAC

How many alignments can we skip?

There IS a T in
‘TAGAC’!

 T A G A C
 T A G A C
 T A G A C
 T A G A C

skip!
skip!

skip!

 T A G A C

3

Boyer-Moore

Intuition: Learn from alignments to avoid others

A A A B A B A A A A A A A A A A A A A A A A A AT:

P: A A B B B

AABAB

AABBB

 A A B B B

There IS an A in
‘AAABB’!

How many alignments can we skip? 1

Boyer-Moore

Intuition: Learn from alignments to avoid others

T:

P:

How many alignments can we skip? 1

 A A B B B
 A A B B B

skip!

A A A B A B A A A A A A A A A A A A A A A A A A

A A B B B

 A A B B B

the first match we encounter!

AABAB

AABBB
There IS an A in

‘AAABB’!

Boyer-Moore

Intuition: Learn from alignments to avoid others

Boyer-Moore: Bad Character rule

T:
P:

C C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 1:

T:
P:

C C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 2:

T:
P:

C C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G CStep 3:

(etc)

Case (a)

Case (b)

Upon mismatch, skip alignments until (a) mismatch becomes a match, or (b) P moves past
mismatched character.

T:
P:

C C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G CStep 7:

Case (b)

(c) If there was no mismatch, don't skip

Case (c)

Boyer-Moore: Bad Character rule

T: C C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
P: C C T T T T G C

Step 1:

T: C C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
P: C C T T T T G C

Step 2:

T: C C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
P: C C T T T T G CStep 3:

We skipped three alignments

Can we do anything to make this better?

C C T T T T G C

 C C T T T T G C
 C C T T T T G C skip!

skip!

C C T T T T G C

Which of the following alignments skips the most?

TATAT…

TAGAC

TAGAT…

TAGAC

T:

P:

T:

P:

TTGAT…

TAGAC

T:

P:

TAGTT…

TAGAC

T:

P:

A) B)

C) D)

Boyer-Moore: Bad Character rule

Boyer-Moore: Bad Character rule improvement

G T A G A T G G C T G A T C G A G T A G C G G C GT:

P: T A G A C

 T A G A C

Continue to test alignment from left-to-right
… but compare characters from right to left.

Right-to-left-scanning w/ BC Rule

T h e r e w o u l d h a v e b e e n a …T:

P: w o r d

w o r d

woul
word

T:
P: There is no ‘l’ in

‘word’!

How many alignments do we skip?

T h e r e w o u l d h a v e b e e n a …T:

P: w o r d

w o r d
 w o r d
 w o r d
 w o r d

How many alignments do we skip? 3

Right-to-left-scanning w/ BC Rule

T:
P:

C C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 1:

T:
P:

C C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 2:

T:
P:

C C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 3:

(etc)

Case (a)

Case (b)

T:
P:

C C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 4:

Case (c)

Case (a)

Right-to-left-scanning w/ BC Rule
Upon mismatch, skip alignments until (a) mismatch becomes a match, or (b) P moves past
mismatched character.

(c) If there was no mismatch, don't skip

T:
P:

C C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 1:

T:
P:

C C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G C

Step 2:

T:
P:

C C T T C T G C T A C C T T T T G C G C G C G C G C G G A A
C C T T T T G CStep 3:

5 characters in T were never looked at

Up to step 3, we skipped 8 alignments

Right-to-left-scanning w/ BC Rule

1. When we hit a mismatch c, move P along until c
becomes a match (or P moves past c)

2. Try alignments in one direction, but do character
comparisons in opposite direction

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

“Bad character rule”

“Right-to-left
scanning”

Learn from character comparisons to skip pointless alignments

How do we put the first two rules in practice?

Right-to-left-scanning w/ BC Rule

Exact pattern matching w/ Boyer-Moore

Boyer Moore preprocesses the pattern

T

P

Boyer-Moore

Preprocess

Find instances of P in T

‘instances’: An exact, full length copy

≈ O(|P | + |T |)
≈ O(|P |)

Boyer-Moore: BC rule preprocessing

Preprocessing requires two args: P: T C G C Σ: A C G T

T C G C
A
C
G
T

P

Σ

The goal is to produce a table which tracks skips

Preprocessing requires two args: P: T C G C Σ: A C G T

T C G C
A
C
G
T

P

Σ

The goal is to produce a table which tracks skips

T: ? ? ? T ? ? ? ? ? ?
P: T C G C

Boyer-Moore: BC rule preprocessing

Preprocessing requires two args: P: T C G C Σ: A C G T

P

Σ

The goal is to produce a table which tracks skips

T: ? ? ? T ? ? ? ? ? ?
P: T C G C

T C G C
A
C
G
T 2

Boyer-Moore: BC rule preprocessing

T C G C
A
C
G
T 2

P

Σ

T: ? ? ? A ? ? ? ? ? ?
P: T C G C

Preprocessing requires two args: P: T C G C Σ: A C G T

The goal is to produce a table which tracks skips

Boyer-Moore: BC rule preprocessing

T C G C
A 3
C
G
T 2

P

Σ

T: ? ? ? A ? ? ? ? ? ?
P: T C G C

Preprocessing requires two args: P: T C G C Σ: A C G T

The goal is to produce a table which tracks skips

Boyer-Moore: BC rule preprocessing

T C G C
A 0 1 2 3
C 0 - 0 -
G 0 1 - 0
T - 0 1 2

P

Σ

T: ? ? A ? ? ? ? ? ? ?
P: T C G C

T: ? ? C ? ? ? ? ? ?
P: T C G C

T: ? ? G ? ? ? ? ? ?
P: T C G C

T: ? ? T ? ? ? ? ? ?
P: T C G C

Preprocessing requires two args: P: T C G C Σ: A C G T

The goal is to produce a table which tracks skips

Boyer-Moore: BC rule preprocessing

Boyer-Moore: BC rule preprocessing

Preprocessing requires two args: P: B A B A A A B

B A B A A A B

A

B

Pattern

Σ

Σ: A B

Boyer-Moore: BC rule preprocessing

Preprocessing requires two args: P: B A B A A A B Σ: A B

B A B A A A B

A 0 1

B 0 0

Pattern

Σ

For each character in pattern Pp
For each character in alphabet Σc

Find the closest previous instance of (to the left of).p c

Boyer-Moore: BC rule preprocessing

Preprocessing requires two args: P: B A B A A A B Σ: A B

B A B A A A B

A 0 1 0 1

B 0 0 1 0

Pattern

Σ

For each character in pattern Pp
For each character in alphabet Σc

Find the closest previous instance of (to the left of).p c

Boyer-Moore: BC rule preprocessing

Preprocessing requires two args: P: B A B A A A B Σ: A B

B A B A A A B

A 0 1 0 1 0 0 0

B 0 0 1 0 1 2 3

Pattern

Σ

For each character in pattern Pp
For each character in alphabet Σc

Find the closest previous instance of (to the left of).p c

Learning Objective:

Implement preprocessing of patterns with Boyer-Moore*

Observe Boyer-Moore* efficiency as a heuristic

Consider: Optimal preprocessing is . Can you code it?θ(|P | |Σ |)

Assignment 4: a_bmoore

Try alignments from left-to-right and match characters from right-to-left

T C G C
A 0 1 2 3
C 0 - 0 -
G 0 1 - 0
T - 0 1 2

P

Σ

T:
P:

T T T T T T T T T T
T C G C

Boyer-Moore: Using the BC Table

When we encounter a mismatch, skip the calculated number of alignments

T C G C
A 0 1 2 3
C 0 - 0 -
G 0 1 - 0
T - 0 1 2

P

Σ

T:
P:

G G G G G G G G G G
T C G C

Boyer-Moore: Using the BC Table

Try alignments from left-to-right and match characters from right-to-left

When we encounter a mismatch, skip the calculated number of alignments

T C G C
A 0 1 2 3
C 0 - 0 -
G 0 1 - 0
T - 0 1 2

P

Σ

T:
P:

A A T C A A T A G C
T C G C

Boyer-Moore: Using the BC Table

Try alignments from left-to-right and match characters from right-to-left

When we encounter a mismatch, skip the calculated number of alignments

Boyer-Moore: Tracking total skips

T: B B B B
A A

A 0 0
B 0 1

P

Σ

T: B B B B B

T: B B B B B B

Boyer-Moore: Tracking total skips

T: B B B B
A A A

A 0 0 0
B 0 1 2

P

Σ

Learning Objective:

Implement preprocessing of patterns with Boyer-Moore*

Observe Boyer-Moore* efficiency as a heuristic

Consider: Our Boyer-Moore is theoretically slower than Z-algorithm.

Assignment 4: a_bmoore

But is it slower in practice? What is our total character comparisons?

A complete bonus lecture!

1. When we hit a mismatch c, move P along until c
becomes a match (or P moves past c)

2. Try alignments in one direction, but do character
comparisons in opposite direction

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

“Bad character rule”

“Right-to-left
scanning”

Learn from character comparisons to skip pointless alignments

Is this ?O(|P | + |T |)

A better Boyer-Moore

Upon mismatch, skip alignments until (a) mismatch becomes a match, or (b) P moves past
mismatched character.

Worst-Case Bad Character rule

T:
P:

A A
A A A

Step 1:

T:
P:

Step 2:

T:
P:

Step 3:

(etc)

Case (c)

T:
P:

Step 4:

A A
A A A

A A
A A A

A A

A A A

Case (c)

Case (c)

Case (c)

Using just bad character, O(|P | |T |)

(c) If there was no mismatch, don't skip

Refinements include:
- "strong" good suffix rule
- Galil rule

We will be covering the ‘weak’ good suffix rule

The complete Boyer-Moore algorithm, with all refinements, is
.O(|P | + |T |)

If interested in refinements, see Gusfield textbook (syllabus)
or contact me for details

A better Boyer-Moore

Intuition: Learn from alignments to avoid others

What does this alignment tell us?

T A C A G A C A T A C A T G A C A G T G A C C AT:

P: A C A T A C

A C A T A C

“Weak” Good Suffix rule

“Weak” Good Suffix rule

We only want to look at alignments that are at least as good as
our current alignment

T A C A G A C A T A C A T G A C A G T G A C C AT:

P: A C A T A C

A C A T A C

Intuition: Learn from alignments to avoid others

“Weak” Good Suffix rule

T A C A G A C A T A C A T G A C A G T G A C C AT:

P: A C A T A C

A C A T A C

Intuition: Learn from alignments to avoid others

What does partial match (the suffix ‘AC’) tell us?

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another ‘AC’ somewhere in the pattern!

“Weak” Good Suffix rule

T A C A G A C A T A C A T G A C A G T G A C C AT:

P: A C A T A C

A C A T A C

Intuition: Learn from alignments to avoid others

A C A T A C
 A C A T A C
 A C A T A C
 A C A T A C
 A C A T A C

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another ‘AC’ somewhere in the pattern!

“Weak” Good Suffix rule

T A C A G A C A T A C A T G A C A G T G A C C AT:

P: A C A T A C

A C A T A C

Intuition: Learn from alignments to avoid others

A C A T A C

How many alignments do we skip? 3

A C A T A C
A C A T A C

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another ‘AC’ somewhere in the pattern!

“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another _______ somewhere in the pattern!

A G T A G C A G C A C A G T A G C A G C T A G AT:

P: A T C

A T C
 A T C
 A T C

How many alignments do we skip?

 A T C

“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another C somewhere in the pattern!

A G T A G C A G C A C A G T A G C A G C T A G AT:

P: A T C

A T C

How many alignments do we skip? 2

A T C

“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another _______ somewhere in the pattern!

How many alignments do we skip?

A G T A G C A G C A C A G T A G C A G C T A G AT:

P: G C A G C

G C A G C

A G T A G C A G C A C A G T A G C A G C T A G AT:

P: G C A G C

G C A G C
 G C A G C
 G C A G C
 G C A G C
 G C A G C
 G C A G C

This is a full length match!

How many alignments do we skip?

“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others

“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another _______ somewhere in the pattern!

How many alignments do we skip?

A G T A G C A G C A C A G T A G C A G C T A G AT:

P: G C A G C

G C A G C

A G T A G C A G C A C A G T A G C A G C T A G AT:

P: G C A G C

How many alignments do we skip?

“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others

G C A G C
G C A G C

Any alignment that overlaps this region of the text must match
the suffix … or have a prefix-suffix partial match!

“Weak” Good Suffix rule
Let t = longest suffix match at alignment; skip until (a) we find another
instance of t or (b) P moves past t

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A
C T T A C T T A C

Step 1:

t

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A
C T T A C T T A C

Step 2:

T:
P:

C G T G C C T A C T T A C T T A C T T A C T T A C G C G A A
C T T A C T T A C

Step 3:

t

An instance of t is either a full match to the left within P (as in step 1),
or a prefix of P matches a suffix of t (as in step 2)

 t occurs in its entirety to the left within P

prefix of P matches a suffix of t

Boyer-Moore: Putting it together

P:
G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
T:

How many characters does bad character skip? 2 characters

P:
G T T A T A G C T G A T C G C G G C G T A G C G G C G A A

G T A G C G G C G
T:

How many characters does good suffix skip? 7 characters

How to combine bad character and good suffix rules?

Take the maximum (7)!

Use bad character or good suffix rule, whichever skips more

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 1:
bc: 6, gs: 0

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 2:
bc: 0, gs: 2

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 3:
bc: 2, gs: 7

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 4:

good suffix

good suffix

bad character

Boyer-Moore: Putting it together

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 1:

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 2:

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 3:

T:
P:

G T T A T A G C T G A T C G C G G C G T A G C G G C G A A
G T A G C G G C G

Step 4:

11 characters of T ignored completely!

Skipped 15 alignments

Boyer-Moore: Putting it together

1. When we hit a mismatch c, move P along until c
becomes a match (or P moves past c)

2. Try alignments in one direction, but do character
comparisons in opposite direction

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.

“Bad character rule”

“Right-to-left
scanning”

Learn from character comparisons to skip pointless alignments

Boyer-Moore

3. When we move P along, make sure characters
that matched in the last alignment also match in
the next alignment

“Good suffix rule”

