String Algorithms and Data Structures The Z-algorithm
 CS 199-225
 September 19, 2022
 Brad Solomon

Department of Computer Science

Exact Pattern Matching w/ Z-algorithm

Find instances of P in T
'instances': An exact, full length copy

The Z-value $\left[Z_{i}(S)\right]$
Given a string $S, Z_{i}(S)$ is the length of the longest substring in S, starting at position $i>0$, that matches a prefix of S.

$$
\begin{array}{ll}
0123456789 & \\
\text { S: ABCDABCAB } & \\
& \\
\text { S: C GCGA ? ? ? ? ? } & \\
& Z_{5}(S)=3 \\
\text { S: A ? ? ? ? ? ? ? ? ? } & Z_{1}(S)=7
\end{array}
$$

The Z-Algorithm

```
S:101$101011
    01$101011
    1$101011
    $101011
    101011
    01011
    1011
    011
    1
    1
```

The Z-Algorithm

$$
\begin{aligned}
& Z_{1}=3 \\
& Z_{2}=
\end{aligned}
$$

0	1	2	3	4	5	6	7
A	A	A	A	B	B	B	B
A	A	A	A	B	B	B	B

We track our current knowledge of S using three values: i, r, l
i gets updated every iteration (as we compute Z_{i})
r gets updated when $Z_{i}>0$ AND $r_{\text {new }}>r_{\text {old }}$
l gets updated whenever r is updated (it stores the index of $r^{\prime} s \mathrm{Z}$-value)

The Z-Algorithm

0	1	2	3	4	5	6	7	8	
1	0	1	$\$$	1	0	1	0	1	1
1	0	1	$\$$	1	0	1	0	1	1

The Z-Algorithm

0	1	2	3	4	5	6	7	8	9
1	0	1	$\$$	1	0	1	0	1	1
1	0	1	$\$$	1	0	1	0	1	1

The Z-Algorithm

0	1	2	3	4	5	6	7	8	9
1	0	1	$\$$	1	0	1	0	1	1
1	0	1	$\$$	1	0	1	0	1	1

The Z-Algorithm

0	1	2	3	4	5	7	
A	A	A	B	B	A	A	A
A	A	A	B	B	A	A	A

The values of i, r, l tell us how much work we need to do to compute Z_{i}
Case 1: $i>r$
$\mathrm{Ex}: i=1, r=0, l=0$
We must compute Z_{i} explicitly!

The Z-Algorithm

0	1	2	3	4	5		6
A	A	A	B	B	A	A	A
A	A	A	B	B	A	A	A

The values of i, r, l tell us how much work we need to do to compute Z_{i}
Case 1: $i>r$
$\mathrm{Ex}: i=5, r=2, l=1$
We must compute Z_{i} explicitly!

The Z-Algorithm

0	1	2	3	4	5	6	
A	A	A	B	B	A	A	A
A	A	A	B	B	A	A	A

The values of i, r, l tell us how much work we need to do to compute Z_{i}
Case 2: $i \leq r$
$\mathrm{Ex}: i=6, r=7, l=5$
To find Z_{6}, we can save time by looking up the value \qquad

The Z-Algorithm

0	1	2	3	4	5	6	
A	B	C	B	A	B	C	A
A	B	C	B	A	B	C	A

The values of i, r, l tell us how much work we need to do to compute Z_{i}
Case 2: $i \leq r$
$\mathrm{Ex}: i=5, r=6, l=4$
To find Z_{6}, we can save time by looking up the value \qquad

The Z-Algorithm

0	1	2	3	4	5	6	7
A	A	B	A	A	A	B	C
A	A	B	A	A	A	B	C

The values of i, r, l tell us how much work we need to do to compute Z_{i}
Case 2: $i \leq r$
Ex: $i=4, r=4, l=3$
To find Z_{4}, we can save time by looking up the value \qquad

The Z-Algorithm

Let $l=0, r=0$, for $i=[1, \ldots,|S|-1]$:
Compute Z_{i} using irl:
Case $1(i>r)$: Compute explicitly; update irl
Case $2(i \leq r)$:
Use previous Z-values to avoid work
Explicitly compute only 'new' characters
How can we tell the difference between cases?

The Z-Algorithm

$$
i=6, r=7, l=5
$$

0	1	2	3	4	5	6	7	8
\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{B}
A	A	A	A	C	A	A	A	B
A	A	A	A	C	A	A	A	B

The amount of work required depends on two pieces of information

1. \# of characters at or after i that we have seen before
2. The \mathbf{Z}-value that matches part or all of the string starting at i

The Z-Algorithm

$$
i=6, r=7, l=5
$$

0	1	2	3	4	5	6	7	8
\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{B}
A	A	A	A	C	A	A	A	B
A	A	A	A	C	A	A	A	B

The amount of work required depends on two pieces of information

1. \# of characters at or after i that we have seen before

Call this value $|\beta|$. What is $|\beta|$ in terms of i, r, l ?

The Z-Algorithm

$$
i=6, r=7, l=5
$$

0	1	2	3	4	5	6	7	8
\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{B}
A	A	A	A	C	A	A	A	B
A	A	A	A	C	A	A	A	B

The amount of work required depends on two pieces of information
2. The \mathbf{Z}-value that matches part or all of the string starting at i

Call this value Z_{k}. What is k in terms of i, r, l ?

The Z-Algorithm $i=6, r=7, l=5$

	0	1	2	3	4	5	6	7	8
	A	A	A	A	C	A	A	A	B
	A	A	A	A	C	A	A	A	B
$Z_{k}=Z_{1}=3$	A	A	A	A	C	A	A	A	B

The amount of work required depends on two pieces of information

1. \# of characters at or after i that we have seen before

$$
|\beta|=7-6+1=2
$$

2. The Z-value that matches part or all of the string starting at i

$$
k=6-5=1
$$

The Z-Algorithm $i=5, r=7, l=4$

0	1	2	3	4	5		6
A	A	A	B	A	A	A	B
A	A	A	B	A	A	A	B

Case 2a: $i \leq r, Z_{k}<|\beta|$
$|\beta|=\ldots, k=, Z_{k}=$
$Z_{i}=$

The Z-Algorithm $i=5, r=7, l=4$

Case 2a: $i \leq r, Z_{k}<\beta$
Z_{l} (defined by r, l) tells us that β matches earlier.

The Z-Algorithm $i=5, r=7, l=4$

Case 2a: $i \leq r, Z_{k}<|\beta|$
Z_{l} tells us that β matches earlier. Z_{k} tells us how much matches the prefix.

The Z-Algorithm $i=5, r=7, l=4$

Case 2a: $i \leq r, Z_{k}<|\beta|$
Z_{l} tells us that β matches earlier. Z_{k} tells us how much matches the prefix.
Because $Z_{k}<|\beta|, Z_{i}=$

The Z-Algorithm $i=4, r=4, l=3$

0	1	2	3	4	5	6	7
A	A	B	A	A	A	B	C
A	A	B	A	A	A	B	C

Case 2b: $i \leq r, Z_{k}=|\beta|$
$|\beta|=\ldots, k=\ldots, Z_{k}=$
$Z_{i}=$

The Z-Algorithm $i=4, r=4, l=3$

Case 2b: $i \leq r, Z_{k}=|\beta|$
Z_{l} (defined by r, l) tells us that β matches earlier.

The Z-Algorithm

 $i=4, r=4, l=3$

Case 2b: $i \leq r, Z_{k}=|\beta|$
Z_{l} (defined by r, l) tells us that β matches earlier.
Z_{k} tells us how much matches the prefix... but not everything!

The Z-Algorithm $i=4, r=4, l=3$

Case 2b: $i \leq r, Z_{k}=|\beta|$

We have all the same info as before but we have unseen characters!

Because $Z_{k}=|\beta|, Z_{i}=$

The Z-Algorithm $i=3, r=5, l=1$

0	1	2	3	4	5	6	7
A	A	A	A	A	A	B	C
A	A	A	A	A	A	B	C

Case 2c: $i \leq r, Z_{k}>|\beta|$
$|\beta|=\ldots, k=, Z_{k}=$
$Z_{i}=$

The Z-Algorithm

$$
i=3, r=5, l=1
$$

Case 2c: $i \leq r, Z_{k}>|\beta|$
Z_{k} tells us how much matches the prefix.

The Z-Algorithm

$$
i=3, r=5, l=1
$$

Case 2c: $i \leq r, Z_{k}>|\beta|$
Z_{l} tells us that β matches earlier. Z_{k} tells us how much matches the prefix.
What do we know about yellow?

The Z-Algorithm

$$
i=3, r=5, l=1
$$

Case 2c: $i \leq r, Z_{k}>|\beta|$
Z_{l} tells us that our entire range (β included) matches earlier
... and that it failed to match the next character.

The Z-Algorithm

$$
i=3, r=5, l=1
$$

Case 2c: $i \leq r, Z_{k}>|\beta|$
Z_{l} tells us that β matches earlier. Z_{k} tells us how much matches the prefix.
Z_{l} also tells us that yellow and green can't be equal!

The Z-Algorithm

$$
i=3, r=5, l=1
$$

Case 2c: $i \leq r, Z_{k}>|\beta|$
Z_{l} tells us that β is our prefix. Z_{k} is also a previously computed prefix.
Because $Z_{k}>|\beta|, Z_{i}=$

The Z-Algorithm

Let $l=0, r=0$, for $i=[1, \ldots,|S|-1]$:
Compute Z_{i} using irl:
Case $1(i>r)$: Compute explicitly; update irl
Case $2(i \leq r)$:

$$
\begin{aligned}
& \text { 2a: }\left(Z_{k}<|\beta|\right): Z_{i}=Z_{k} \\
& \text { 2b: }\left(Z_{k}=|\beta|\right): Z_{i}=Z_{k}+\operatorname{explicit(r+1);~\text {update}irl} \\
& \text { 2c: }\left(Z_{k}>|\beta|\right): Z_{i}=|\beta|
\end{aligned}
$$

Assignment 3: a_zalg

Learning Objective:

Construct the full Z-algorithm and measure its efficiency

Demonstrate use of Z-algorithm in pattern matching

Consider: Our goal is $\theta(|P|+|T|)$. Does Z-alg search match this?

Next week:

If I gave you the pattern I was interested in ahead of time, what could you pre-compute to speed up search?

Ex: I'm going to try to look up the word 'arrays' - but you don't know what text l'm going to search through.

