String Algorithms and Data Structures The Z-algorithm

CS 199-225 Brad Solomon September 19, 2022

Department of Computer Science

Exact Pattern Matching w/ Z-algorithm

'instances': An exact, full length copy

The Z-value [$Z_i(S)$]

Given a string *S*, $Z_i(S)$ is the length of the longest substring in *S*, starting at position i > 0, that matches a prefix of *S*.

0123456789 S: **ABCDABCDAB** $Z_4(S) =$

S: CGCGA????? $Z_5(S) = 3$

S: A ? ? ? ? ? ? ? ? ? ?

 $Z_1(S) = 7$

S:101\$101011 01\$101011 1\$101011 \$101011 101011 01011 1011 011 11 1

We track our current knowledge of S using three values: *i*, *r*, *l*

i gets updated every iteration (as we compute Z_i)

r gets updated when $Z_i > 0$ AND $r_{new} > r_{old}$

l gets updated whenever *r* is updated (it stores the index of *r*'s Z-value)

The values of *i*, *r*, *l* tell us how much work we need to do to compute Z_i

Case 1: *i* > *r*

Ex: i = 1, r = 0, l = 0

We must compute Z_i explicitly!

The values of *i*, *r*, *l* tell us how much work we need to do to compute Z_i

Case 1: *i* > *r*

Ex: i = 5, r = 2, l = 1

We must compute Z_i explicitly!

The values of *i*, *r*, *l* tell us how much work we need to do to compute Z_i

Case 2: $i \leq r$

Ex: i = 6, r = 7, l = 5

To find Z_6 , we can save time by looking up the value _____

The values of *i*, *r*, *l* tell us how much work we need to do to compute Z_i

Case 2: $i \leq r$

Ex: i = 5, r = 6, l = 4

To find Z_6 , we can save time by looking up the value _____

The values of *i*, *r*, *l* tell us how much work we need to do to compute Z_i

Case 2: $i \leq r$

Ex: i = 4, r = 4, l = 3

To find Z_4 , we can save time by looking up the value _____

Let
$$l = 0, r = 0$$
, for $i = [1, ..., |S| - 1]$:

```
Compute Z_i using irl:
```

Case 1 (i > r): Compute explicitly; update *irl*

Case 2 ($i \leq r$):

Use previous Z-values to avoid work

Explicitly compute only 'new' characters

How can we tell the difference between cases?

i = 6, r = 7, l = 5

The amount of work required depends on two pieces of information

1. # of characters at or after *i* that we have seen before

2. The Z-value that matches part or all of the string starting at i

i = 6, r = 7, l = 5

The amount of work required depends on two pieces of information

1. # of characters at or after i that we have seen before

Call this value $|\beta|$. What is $|\beta|$ in terms of *i*, *r*, *l*?

i = 6, r = 7, l = 5

The amount of work required depends on two pieces of information

2. The Z-value that matches part or all of the string starting at i

Call this value Z_k . What is k in terms of i, r, l?

$$i = 6, r = 7, l = 5$$

The amount of work required depends on two pieces of information

1. # of characters at or after i that we have seen before

$$|\beta| = 7 - 6 + 1 = 2$$

2. The Z-value that matches part or all of the string starting at i

$$k = 6 - 5 = 1$$

i = 5, r = 7, l = 4

Case 2a: $i \leq r, Z_k < |\beta|$

 $Z_i =$ _____

i = 5, r = 7, l = 4

Case 2a: $i \leq r, Z_k < \beta$

 Z_l (defined by r, l) tells us that β matches earlier.

i = 5, r = 7, l = 4

Case 2a: $i \leq r, Z_k < |\beta|$

 Z_l tells us that β matches earlier. Z_k tells us how much matches the prefix.

Case 2a: $i \leq r, Z_k < |\beta|$

 Z_l tells us that β matches earlier. Z_k tells us how much matches the prefix.

Because
$$Z_k < |\beta|$$
, $Z_i =$ _____

i = 4, r = 4, l = 3

Case 2b: $i \leq r, Z_k = |\beta|$

 $Z_i =$ _____

i = 4, r = 4, l = 3

Case 2b: $i \leq r, Z_k = |\beta|$

 Z_l (defined by r, l) tells us that β matches earlier.

i = 4, r = 4, l = 3

Case 2b: $i \leq r, Z_k = |\beta|$

 Z_l (defined by r, l) tells us that β matches earlier.

 Z_k tells us how much matches the prefix... but not everything!

Case 2b: $i \leq r, Z_k = |\beta|$

We have all the same info as before but we have unseen characters!

Because
$$Z_k = |\beta|$$
, $Z_i =$ _____

i = 3, r = 5, l = 1

Case 2c: $i \leq r, Z_k > |\beta|$

 $Z_i =$ _____

i = 3, r = 5, l = 1

Case 2c: $i \leq r, Z_k > |\beta|$

 Z_k tells us how much matches the prefix.

i = 3, r = 5, l = 1

Case 2c: $i \leq r, Z_k > |\beta|$

 Z_l tells us that β matches earlier. Z_k tells us how much matches the prefix.

What do we know about yellow?

i = 3, r = 5, l = 1

Case 2c: $i \leq r, Z_k > |\beta|$

 Z_l tells us that our entire range (β included) matches earlier

... and that it failed to match the next character.

Case 2c: $i \leq r, Z_k > |\beta|$

 Z_l tells us that β matches earlier. Z_k tells us how much matches the prefix.

Z_l also tells us that yellow and green can't be equal!

Case 2c: $i \leq r, Z_k > |\beta|$

 Z_l tells us that β is our prefix. Z_k is also a previously computed prefix.

Because
$$Z_k > |\beta|$$
, $Z_i =$ _____

Let
$$l = 0, r = 0$$
, for $i = [1, ..., |S| - 1]$:

Compute Z_i using *irl*:

Case 1 (i > r): Compute explicitly; update *irl*

Case 2 ($i \leq r$):

 $2a: (\mathbf{Z}_k < |\beta|): Z_i = Z_k$

2b: $(Z_k = |\beta|): Z_i = Z_k + explicit(r+1);$ update *irl*

2c: $(Z_k > |\beta|): Z_i = |\beta|$

Assignment 3: a_zalg

Learning Objective:

Construct the full Z-algorithm and measure its efficiency

Demonstrate use of Z-algorithm in pattern matching

Consider: Our goal is $\theta(|P| + |T|)$. Does Z-alg search match this?

Next week:

If I gave you the pattern I was interested in ahead of time, what could you pre-compute to speed up search?

Ex: I'm going to try to look up the word **'arrays'** — but you don't know what text I'm going to search through.