String Algorithms and Data Structures
Hidden Markov Models

CS 199-225
Brad Solomon

December 5, 2022
Learning Objectives

Review Markov Chains

Introduce Hidden Markov Models

Introduce the Viterbi algorithm for finite discrete HMMs
A finite Markov Chain has a set of states S and a finite matrix M

$$S = \{ \text{Clear, Rain, Snow} \}$$

$$M = \begin{pmatrix}
.5 & .3 & .2 \\
.5 & .4 & .1 \\
.2 & .1 & .7
\end{pmatrix}$$
Markov Assumption

Probability of state x_k depends only on previous state x_{k-1}

Ex: Let $x = \{ C, R, C, R, R \}$

$$P(x) = P(x_k, x_{k-1}, \ldots x_1)$$

$$= P(x_k | x_{k-1}, \ldots x_1)P(x_{k-1}, \ldots x_1)$$

$$= P(x_k | x_{k-1}, \ldots x_1)P(x_{k-1} | x_{k-2}, \ldots x_1) \ldots P(x_2 | x_1)P(x_1)$$

$$P(x) \approx P(x_k | x_{k-1})P(x_{k-1} | x_{k-2}) \ldots P(x_2 | x_1)P(x_1)$$
Markov Chain

Given a Markov Chain and an initial state, all subsequent states can be represented either as a series of random states or a transition probability.

\[M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix} \]

\[X_0 = \text{Clear} \]
\[X_1 = \text{Clear} \]
\[X_2 = \text{Snow} \]
\[X_3 = \text{Snow} \]
\[X_4 = \text{Snow} \]
\[X_5 = \text{Rain} \]
Markov Chain

Given a Markov Chain and an initial state, all subsequent states can be represented either as a series of random states or a transition probability.

\[M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix} \]

\[P_0 = (.4 \quad .3 \quad .3) \]

\[P_1 = (.41 \quad .27 \quad .32) \]

\[P_2 = (.404 \quad .263 \quad .333) \]

\[P_3 = (.401 \quad .259 \quad .340) \]
```python
>>> cpg_conds, _ = markov_chain_from_dinucs(samp_cpg)
>>> print(cpg_conds)
[[ 0.19152248,  0.27252589,  0.39998803,  0.1359636 ],
 [ 0.18921984,  0.35832388,  0.25467081,  0.19778547],
 [ 0.17322219,  0.33142737,  0.35571338,  0.13963706],
 [ 0.09509721,  0.33836493,  0.37567927,  0.19085859]]

>>> default_conds, _ = markov_chain_from_dinucs(samp_def)
>>> print(default_conds)
[[ 0.33804066,  0.17971034,  0.23104207,  0.25120694],
 [ 0.37777025,  0.25612117,  0.03987225,  0.32623633],
 [ 0.30257815,  0.20326794,  0.24910719,  0.24504672],
 [ 0.21790184,  0.20942905,  0.2642385 ,  0.3084306 ]]

>>> print(np.log2(cpg_conds) - np.log2(def_conds))
[[ -0.87536356,  0.59419041,  0.81181564, -0.85527103],
  [-0.98532149,  0.49570561,  2.64256972, -0.7126391 ],
  [-0.79486196,  0.68874785,  0.51821792, -0.79549511],
  [-1.22085697,  0.73036913,  0.48119354, -0.69736839]]
```
Markov Chain in Sequencing

Drew 1,000 100-mers from inside CpG islands and another 1,000 from outside, and calculated $S(x)$ for all

![Diagram showing frequency of $S(x)$ scores with orange indicating default and blue indicating CpG]
Markov Chain Matrix

If I’m working at time 0, what is probability that I’m working at time t?

Claim: $Pr(X_t = v | X_0 = u) = M^t[u, v]$

Base Case:

$T=1:$

$T=2:$
Markov Chain Matrix

Claim: \(Pr(X_t = v \mid X_0 = u) = M^t[u, v] \)

Induction:
Assume \(Pr(X_{t-1} = v \mid X_0 = u) = M^{t-1}[u, v] \).
Show holds for \(Pr(X_t = w \mid X_0 = u) = M^t[u, w] \)

\[
M = \begin{pmatrix}
.4 & .6 & 0 \\
.1 & .6 & .3 \\
.5 & 0 & .5 \\
\end{pmatrix}
\]
Markov Chain Matrix

What happens as $t \to \infty$?

$$M = \begin{pmatrix} .4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix} \quad M^3 = \begin{pmatrix} .238 & .492 & .270 \\ .307 & .402 & .291 \\ .335 & .450 & .215 \end{pmatrix}$$

$$M^{10} = \begin{pmatrix} .2940 & .4413 & .2648 \\ .2942 & .4411 & .2648 \\ .2942 & .4413 & .2648 \end{pmatrix}$$

$$M^{60} = \begin{pmatrix} .2941 & .4412 & .2647 \\ .2941 & .4412 & .2647 \\ .2941 & .4412 & .2647 \end{pmatrix}$$
Markov Chain Stationary Distribution

A probability vector π is called a **stationary distribution** for a Markov Chain if it satisfies the stationary equation: $\pi = \pi M$

$$M = \begin{pmatrix} .4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix}$$

\[
\begin{align*}
\pi[W] &= .4\pi[W] + .1\pi[G] + .5\pi[C] \\
\pi[S] &= .6\pi[W] + .6\pi[G] + 0\pi[C] \\
\pi[E] &= 0\pi[W] + .3\pi[G] + .5\pi[C]
\end{align*}
\]
Markov Chain Stationary Distribution

Stationary distributions can be calculated using the system of equation (and that all probabilities sum to 1). **But not every Markov Chain has a steady state (and some have infinitely many)!**
Markov Chain Monte Carlo

There are ways to prove whether a Markov Chain has a stationary distribution, but several algorithms exist that approximate!

Gibbs Sampling:

Randomly assign values to a probability vector $\pi = (\theta_1, \theta_2, \ldots, \theta_d)$.

For each i, $1 \leq i \leq d$:

Update value θ_i based on

$$(\theta_1, \ldots, \theta_{i-1})^{t+1}, (\theta_{i+1}, \ldots, \theta_d)^t$$

Repeat for different starting i
Hidden Markov Models

In the real world, we often don’t know the underlying markov chain!

Instead, we have observations that can be used to predict our current state.

Ex: Repeated coin flips but *sometimes* I cheat and use a fixed coin.
Hidden Markov Models

Unobserved States

\[s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \rightarrow \ldots \rightarrow s_n \]

Observed Emissions

\[e_1 \rightarrow e_2 \rightarrow e_3 \rightarrow e_4 \rightarrow \ldots \rightarrow e_n \]
Hidden Markov Models

\[M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix} \quad \quad E = \begin{pmatrix} .8 & .2 \\ .3 & .7 \\ .5 & .5 \end{pmatrix} \]

\[\Pr(\{O, I, O\} | \{C, R, S\})? \]

\[\Pr(\{O, I, O\}, \{C, R, S\} | P(T_0 = C) = 0.4)? \]
Hidden Markov Models

\[
M = \begin{pmatrix}
.5 & .3 & .2 \\
.5 & .4 & .1 \\
.2 & .1 & .7
\end{pmatrix}
\quad E = \begin{pmatrix}
.8 & .2 \\
.3 & .7 \\
.5 & .5
\end{pmatrix}
\]

\[
\Pr(\{O, I, O\})?
\]

If I go outside for three days, what was the most likely weather?
Hidden Markov Models

If I go outside for three days, what was the most likely weather?

\[M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix} \quad E = \begin{pmatrix} .8 & .2 \\ .3 & .7 \\ .5 & .5 \end{pmatrix} \]
Viterbi Algorithm

We can brute force all possible combinations…

… or we can use the Markov Assumption with Dynamic Programming

\[
M = \begin{pmatrix}
0.6 & 0.4 \\
0.4 & 0.6 \\
\end{pmatrix}
\quad E = \begin{pmatrix}
0.5 & 0.5 \\
0.8 & 0.2 \\
\end{pmatrix}
\]

Example by Ben Langmead
The Viterbi Algorithm is used to find the most likely sequence of states in an HMM given an observation sequence. The diagram illustrates the process with the observation sequence HHTT and states loaded and fair. The equations represent the greatest joint probability:

$$s_{k,i} = \text{greatest joint probability of observing the length-}i\text{ prefix of }e\text{ and any sequence of states ending in state }k$$

The equations are:

$$\max_x P(x_F, HHTT)$$

$$\max_x P(x_L, HHTTHTHH)$$
Viterbi Algorithm

\[S[t + 1, L] = \]

\[x_t \quad S[t, L] \quad x_{t+1} \]

\[S[t, F] \]
Viterbi Algorithm

\[S[t + 1, F] = \]
Assume we start with Fair/Loaded with equal probability

\[
S[0, L] = 0.5 \cdot P(H | L) \quad S[0, F] = 0.5 \cdot P(H | F)
\]

\[
= 0.5 \cdot 0.8 \quad = 0.5 \cdot 0.5
\]

\[
M = \begin{pmatrix} 0.6 & 0.4 \\ 0.4 & 0.6 \end{pmatrix} \quad E = \begin{pmatrix} 0.5 & 0.5 \\ 0.8 & 0.2 \end{pmatrix}
\]
Viterbi Algorithm

\[
\begin{array}{cccccccccccc}
\text{Loaded} & 0.4 & \text{Fair} & 0.25 & H & H & T & T & H & T & H & H & H & H \\
\end{array}
\]

\[
M = \begin{pmatrix}
0.6 & 0.4 \\
0.4 & 0.6 \\
\end{pmatrix}
\]

\[
E = \begin{pmatrix}
0.5 & 0.5 \\
0.8 & 0.2 \\
\end{pmatrix}
\]

\[
S[1, \ L] =
\]
Viterbi Algorithm

\[M = \begin{pmatrix} .6 & .4 \\ .4 & .6 \end{pmatrix} \]

\[E = \begin{pmatrix} .5 & .5 \\ .8 & .2 \end{pmatrix} \]

\[S[1, F] = \]
Viterbi Algorithm

<table>
<thead>
<tr>
<th>Loaded</th>
<th>0.4</th>
<th>0.19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fair</td>
<td>0.25</td>
<td>0.08</td>
</tr>
</tbody>
</table>

\[
M = \begin{pmatrix}
0.6 & 0.4 \\
0.4 & 0.6
\end{pmatrix}
\]

\[
E = \begin{pmatrix}
0.5 & 0.5 \\
0.8 & 0.2
\end{pmatrix}
\]
Viterbi Algorithm

These get small — now \log_2 scaled

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.32</td>
<td>-2.38</td>
<td>-5.44</td>
<td>-8.35</td>
<td>-8.08</td>
<td>-11.1</td>
<td>-11.6</td>
<td>-12.6</td>
<td>-13.7</td>
<td>-14.7</td>
<td>-15.8</td>
</tr>
<tr>
<td>-2</td>
<td>-3.64</td>
<td>-4.7</td>
<td>-6.4</td>
<td>-8.2</td>
<td>-9.9</td>
<td>-11.7</td>
<td>-13.4</td>
<td>-14.9</td>
<td>-16</td>
<td>-17</td>
</tr>
</tbody>
</table>

H H T T T H T H H H H

Traceback: Same as edit distance!

Start from largest value and remember ‘where I came from’
Viterbi Algorithm

These get small — now \log_2 scaled

<table>
<thead>
<tr>
<th>-1.32</th>
<th>-2.38</th>
<th>-5.44</th>
<th>-8.35</th>
<th>-8.08</th>
<th>-11.1</th>
<th>-11.6</th>
<th>12.6</th>
<th>13.7</th>
<th>14.7</th>
<th>15.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-3.64</td>
<td>-4.7</td>
<td>6.4</td>
<td>8.2</td>
<td>9.9</td>
<td>-11.7</td>
<td>-13.4</td>
<td>-14.9</td>
<td>-16</td>
<td>-17</td>
</tr>
</tbody>
</table>

Traceback: Same as edit distance!

Start from largest value and remember ‘where I came from’
Viterbi Algorithm

What is running time?
What will you get out of this class?

Understand fundamental string algorithms

Experience applying data structures, algorithms, and algorithm design principles to real world problems

Justify implementation choices based on theoretical or practical considerations

Build a foundation for future data science projects
Thanks for listening! Have a good winter break