String Algorithms and Data Structures Markov Chains

CS 199-225
November 29, 2022
Brad Solomon

Department of Computer Science

Learning Objectives

Introduce Markov Chains

Define and determine stationary states

Identify common Markov Chain irregularities

Introduce Hidden Markov Models

Modeling events with State Diagrams

A state diagram is a (usually weighted) directed graph where nodes are states and edges are transitions between them

Class is happening
 Class isn't happening

These diagrams are very useful in modeling many real world scenarios!

Sequence Modeling in Biology

CATGACGTCGCGGACAACCCAGAATTGTCTTGAGCGATGGTAAGATCTAACCTCACTGC CTGGGGCTTTACTGATGTCATACCGTCTTGCACGGGGATAGAATGACGGTGCCCGTGTC ATTTTCTGAAAGTTACAGACTTCGATTAAAAAGATCGGACTGCGCGTGGGCCCGGAGAG TTTTTCGACGTGTCAAGGACTCAAGGGAATAGTTTGGCGGGAGCGTTACAGCTTCAATT CGATAAAATTCAACTACTGGTTTCGGCCTAATAGGTCACGTTTTATGTGAAATAGAGGG CCCTGGGTGTTCTATGATAAGTCCTGCTTTATAACACGGGGCGGTTAGGTTAAATGACT ATCCAAGCGCCCGCTAATTCTGTTCTGTTAATGTTCATACCAATACTCACATCACATTA AGCCCAGTCGCAAGGGTCTGCTGCTGTTGTCGACGCCTCATGTTACTCCTGGAATCTAC GGTTAAGGCGTGTGATCGACGATGCAGGTATACATCGGCTCGGACCTACAGTGGTCGAT TCGCGGTTCGGCGCGTAGTTGAGTGCGATAACCCAACCGGTGGCAAGTAGCAAGAAGAC AGACAACCTAACTAATAGTCTCTAACGGGGAATTACCTTTACCAGTCTCATGCCTCCAA CAATGATATCGCCCACAGAAAGTAGGGTCTCAGGTATCGCATACGCCGCGCCCGGGTCO GACAGTAGAGAGCTATTGTGTAATTCAGGCTCAGCATTCATCGACCTTTCCTGTTGTGA TCTCGTCCGTAACGATCTGGGGGGCAAAACCGAATATCCGTATTCTCGTCCTACGGGTC TGCGCGTGATCGTCAGTTAAGTTAAATTAATTCAGGCTACGGTAAACTTGTAGTGAGCT ACGGGTTCGCTACAGATGAACTGAATTTATACACGGACAACTCATCGCCCATTTGGGCG AAAGTGGCAGATTAGGAGTGCTTGATCAGGTTAGCAGGTGGACTGTATCCAACAGCGCA CCAAAGCGTTGTAGTGGTCTAAGCACCCCTGAACAGTGGCGCCCATCGTTAGCGTAGTA AGGTGCGACATGGGGCCAGTTAGCCTGCCCTATATCCCTTGCACACGTTCAATAAGAGG TTTTTAAATTAGGATGCCGACCCCATCATTGGTAACTGTATGTTCATAGATATTTCTTC AGCTGACACGCAAGGGTCAACAATAATTTCTACTATCACCCCGCTGAACGACTGTCTTT CTTAGATTCGCGTCCTAACGTAGTGAGGGCCGAGTCATATCATAGATCAGGCATGAGAA CACACGAGTTGTAAACAACTTGATTGCTATACTGTAGCTACCGCAAGGATCTCCTACAT ATCTGGATCCGAGTCAGAAATACGAGTTAATGCAAATTTACGTAGACCGGTGAAAACAC AGACCGTAGTCAGAAGTGTGGCGCGCTATTCGTACCGAACCGGTGGAGTATACAGAATT AGGAGCTCGGTCCCCAATGCACGCCAAAAAAGGAATAAAGTATTCAAACTGCGCATGGT CTATTATCCATCCGAACGTTGAACCTACTTCCTCGGCTTATGCTGTCCTCAACAGTATC CGGCTGTGGATCTTAACGGCCACATTCTTAATTCCGACCGATCACCGATCGCCTTTCCT ACTAAGTTATCCAGATCAAGGTTTGAACGGACTCGTATGACATGTGTGACTGAACCCGG CTGTTTCAAGGCCTCTGCTTTGGTATCACTCAATATATTCAGACCAGACAAGTGGCAAA CTAGGTATTCACGCAACCGTCGTAACATGCACTAAGGATAACTAGCGCCAGGGGGGCAT AAAGACTACCCTATGGATTCCTTGGAGCGGGGACAATGCAGACCGGTTACGACACAATT GGTATTATTAGCAAGACAATAAAGGACATTGCACAGAGACTTATTAGAATTCAACAAAC GTGTTGGGTCGGGCAAGTCCCCGAAGCTCGGCCAAAAGATTCGCCATGGAACCGTCTGG

Market Trends in Economics

PageRank in Graphs

Equilibrium State
1:4/13
2: 2/13
3: 2/13
4: $1 / 13$
5: 1/13
6: 1/13
7: 1/13
8: 1/13

Markov Chain

A finite Markov Chain has a set of states S and a finite matrix M

$$
\begin{aligned}
& S=\{\text { Clear, Rain, Snow }\} \\
& M=\left(\begin{array}{lll}
.5 & .3 & .2 \\
.5 & .4 & .1 \\
.2 & .1 & .7
\end{array}\right)
\end{aligned}
$$

Markov Chain

Given a Markov Chain and an initial state, all subsequent states can be represented either as a series of random states or a transition probability.

$$
M=\left(\begin{array}{lll}
.5 & .3 & .2 \\
.5 & .4 & .1 \\
.2 & .1 & .7
\end{array}\right)
$$

$$
\begin{aligned}
& X_{0}=\text { Clear } \\
& X_{1}=\text { Clear } \\
& X_{2}=\text { Snow } \\
& X_{3}=\text { Snow } \\
& X_{4}=\text { Snow } \\
& X_{5}=\text { Rain }
\end{aligned}
$$

Markov Chain

Given a Markov Chain and an initial state, all subsequent states can be represented either as a series of random states or a transition probability.

$$
M=\left(\begin{array}{lll}
.5 & .3 & .2 \\
.5 & .4 & .1 \\
.2 & .1 & .7
\end{array}\right)
$$

$$
\begin{aligned}
& M_{0}=\left(\begin{array}{lll}
.4 & .3 & .3
\end{array}\right) \\
& M_{1}=\left(\begin{array}{lll}
.41 & .27 & .32
\end{array}\right) \\
& M_{2}=\left(\begin{array}{lll}
.404 & .263 & .333
\end{array}\right) \\
& M_{3}=\left(\begin{array}{lll}
.401 & .259 & .340
\end{array}\right)
\end{aligned}
$$

Markov Assumption

The probability of the next state depends only on our current state

Wed

Markov Assumption

Probability of state x_{k} depends only on previous state x_{k-1}

$$
\begin{aligned}
& \text { Ex:Let } x=\{C, R, C, R, R\} \\
& P(x)=P\left(x_{k}, x_{k-1}, \ldots x_{1}\right)
\end{aligned}
$$

$$
=P\left(x_{k} \mid x_{k-1}, \ldots x_{1}\right) P\left(x_{k-1}, \ldots x_{1}\right)
$$

$$
=P\left(x_{k} \mid x_{k-1}, \ldots x_{1}\right) P\left(x_{k-1} \mid x_{k-2}, \ldots x_{1}\right) \ldots P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right)
$$

$P(x) \approx$

Markov Chain in Sequencing

Given a set of sequences, we can construct a model of transitions

$P(A \mid A)=$ \# times $A A$ occurs / \# times $A X$ occurs $P(C \mid A)=$ \# times $A C$ occurs / \# times $A X$ occurs P(G|A) = \# times AG occurs / \# times AX occurs

P(T|A) = \# times AT occurs / \# times AX occurs P(A|C) = \# times CA occurs / \# times CX occurs (etc)

Example by Ben Langmead

Markov Chain in Sequencing

Given a set of sequences, we can construct a model of transitions

Example by Ben Langmead

Markov Chain in Sequencing

Markov Chain in Sequencing

We can use this same approach to predict a label in our sequences as well CpG island: part of the genome where CG occurs particularly frequently

Example by Ben Langmead

Markov Chain in Sequencing

To predict a label of a sequencing region, make a Markov chain for both!

CpG Island

'Default'

Example by Ben Langmead

Markov Chain in Sequencing

$$
\begin{aligned}
& \text { >>> print(np.log2(cpg_conds) - np.log2(def_conds)) } \\
& \text { A [[-0.87536356, 0.59419041, 0.81181564, -0.85527103], } \\
& X_{i-1} \quad \mathrm{C}[-0.98532149,0.49570561, \quad 2.64256972,-0.7126391] \text {, } \\
& \text { G }[-0.79486196,0.68874785,0.51821792,-0.79549511] \text {, } \\
& \text { T [-1.22085697, 0.73036913, 0.48119354, -0.69736839]] } \\
& \text { A C } \quad X_{i} \quad \text { G T } \\
& \mathrm{P}(x)=\mathrm{P}\left(x_{4} \mid x_{3}\right) \mathrm{P}\left(x_{3} \mid x_{2}\right) \mathrm{P}\left(x_{2} \mid x_{1}\right) \mathrm{P}\left(x_{1}\right) \\
& P(x)=P(C \mid T) P(T \mid A) P(A \mid G) P(G)=0.73036913+=-0.919763 \\
& -0.85527103+ \\
& \text {-0.79486196 }
\end{aligned}
$$

Example by Ben Langmead

Markov Chain in Sequencing

Drew 1,000 100-mers from inside CpG islands and another 1,000 from outside, and calculated $\mathrm{S}(\mathrm{x})$ for all

Markov Chain Matrix

If I'm working at time 0 , what is probability that I'm working at time t ?

Claim: $\operatorname{Pr}\left(X_{t}=v \mid X_{0}=u\right)=M^{t}[u, v]$

$$
M=\left(\begin{array}{ccc}
.4 & .6 & 0 \\
.1 & .6 & .3 \\
.5 & 0 & .5
\end{array}\right)
$$

Markov Chain Matrix
Claim: $\operatorname{Pr}\left(X_{t}=v \mid X_{0}=u\right)=M^{t}[u, v]$

Base Case:

$\mathrm{T}=1$:
$\mathrm{T}=2$:

$$
M=\left(\begin{array}{ccc}
.4 & .6 & 0 \\
.1 & .6 & .3 \\
.5 & 0 & .5
\end{array}\right)
$$

Markov Chain Matrix

Claim: $\operatorname{Pr}\left(X_{t}=v \mid X_{0}=u\right)=M^{t}[u, v]$
Induction:
Assume $\operatorname{Pr}\left(X_{t-1}=v \mid X_{0}=u\right)=M^{t-1}[u, v]$.
Show holds for $\operatorname{Pr}\left(X_{t}=w \mid X_{0}=u\right)=M^{t}[u, w]$

$$
M=\left(\begin{array}{ccc}
.4 & .6 & 0 \\
.1 & .6 & .3 \\
.5 & 0 & .5
\end{array}\right)
$$

Markov Chain Matrix

What happens as $t \rightarrow \infty$?

$$
\begin{aligned}
& M=\left(\begin{array}{lll}
.4 & .6 & 0 \\
.1 & .6 & .3 \\
.5 & 0 & .5
\end{array}\right) \quad M^{3}=\left(\begin{array}{lll}
.238 & .492 & .270 \\
.307 & .402 & .291 \\
.335 & .450 & .215
\end{array}\right) \\
& M^{10}=\left(\begin{array}{lll}
.2940 & .4413 & .2648 \\
.2942 & .4411 & .2648 \\
.2942 & .4413 & .2648
\end{array}\right) \\
& M^{60}=\left(\begin{array}{lll}
.2941 & .4412 & .2647 \\
.2941 & .4412 & .2647 \\
.2941 & .4412 & .2647
\end{array}\right)
\end{aligned}
$$

Markov Chain Stationary Distribution

A probability vector π is called a stationary distribution for a Markov
Chain if it satisfies the stationary equation: $\pi=\pi M$

$$
M=\left(\begin{array}{ccc}
.4 & .6 & 0 \\
.1 & .6 & .3 \\
.5 & 0 & .5
\end{array}\right) \quad \begin{aligned}
& \pi[W]=.4 \pi[W]+.1 \pi[G]+.5 \pi[C] \\
& \pi[S]=.6 \pi[W]+.6 \pi[G]+0 \pi[C] \\
& \pi[E]=0 \pi[W]+.3 \pi[G]+.5 \pi[C]
\end{aligned}
$$

Markov Chain Stationary Distribution

Stationary distributions can be calculated using the system of equation (and that all probabilities sum to 1). But not every Markov Chain has a steady state (and some have infinitely many)!

Markov Chain Monte Carlo

There are ways to prove whether a Markov Chain has a stationary distribution, but several algorithms exist that approximate!

Gibbs Sampling:

Randomly assign values to a probability vector $\pi=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{d}\right)$.
Repeatedly:
Pick a random $1 \leq i \leq d$
Randomly update value $\theta_{i} \mid \theta_{1}, \ldots, \theta_{i-1}, \theta_{i+1}, \ldots, \theta_{d}$

Markov Chain Monte Carlo

There are ways to prove whether a Markov Chain has a stationary distribution, but several algorithms exist that approximate!

Gibbs Sampling:

Randomly assign values to a probability vector $\pi=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{d}\right)$.

Repeatedly:
Pick a random $1 \leq i \leq d$
Randomly update value θ_{i} based on
$\theta_{1}, \ldots, \theta_{i-1}, \theta_{i+1}, \ldots, \theta_{d}$

Hidden Markov Models

In the real world, we often don't know the underlying markov chain!
Instead, we have observations that can be used to predict our current state.
Ex: Repeated coin flips but sometimes I cheat and use a fixed coin.

Hidden Markov Model

Unobserved States

Observed Emissions

