String Algorithms and Data Structures Markov Chains

CS 199-225 Brad Solomon November 29, 2022

Department of Computer Science

Learning Objectives

Introduce Markov Chains

Define and determine stationary states

Identify common Markov Chain irregularities

Introduce Hidden Markov Models

Modeling events with State Diagrams

A **state diagram** is a (usually weighted) directed graph where nodes are states and edges are transitions between them

These diagrams are very useful in modeling many real world scenarios!

Sequence Modeling in Biology

CATGACGTCGCGGACAACCCAGAATTGTCTTGAGCGATGGTAAGATCTAACCTCACTGC CTGGGGCTTTACTGATGTCATACCGTCTTGCACGGGGATAGAATGACGGTGCCCGTGTC ATTTTCTGAAAGTTACAGACTTCGATTAAAAAGATCGGACTGCGCGTGGGCCCGGAGAG TTTTTCGACGTGTCAAGGACTCAAGGGAATAGTTTGGCGGGAGCGTTACAGCTTCAATT CGATAAAATTCAACTACTGGTTTCGGCCTAATAGGTCACGTTTTATGTGAAATAGAGGG CCCTGGGTGTTCTATGATAAGTCCTGCTTTATAACACGGGGCGGTTAGGTTAAATGACT ATCCAAGCGCCCGCTAATTCTGTTCTGTTAATGTTCATACCAATACTCACATCACATTA AGCCCAGTCGCAAGGGTCTGCTGCTGTTGTCGACGCCTCATGTTACTCCTGGAATCTAC GGTTAAGGCGTGTGATCGACGATGCAGGTATACATCGGCTCGGACCTACAGTGGTCGAT TCGCGGTTCGGCGCGTAGTTGAGTGCGATAACCCAACCGGTGGCAAGTAGCAAGAAGAC AGACAACCTAACTAATAGTCTCTAACGGGGAATTACCTTTACCAGTCTCATGCCTCCAA CAATGATATCGCCCACAGAAAGTAGGGTCTCAGGTATCGCATACGCCGCGCCCGGGTCC GACAGTAGAGAGCTATTGTGTAATTCAGGCTCAGCATTCATCGACCTTTCCTGTTGTGA TCTCGTCCGTAACGATCTGGGGGGGCAAAACCGAATATCCGTATTCTCGTCCTACGGGTC TGCGCGTGATCGTCAGTTAAGTTAAATTAATTCAGGCTACGGTAAACTTGTAGTGAGCT ACGGGTTCGCTACAGATGAACTGAATTTATACACGGACAACTCATCGCCCATTTGGGCG AAAGTGGCAGATTAGGAGTGCTTGATCAGGTTAGCAGGTGGACTGTATCCAACAGCGCA CCAAAGCGTTGTAGTGGTCTAAGCACCCCTGAACAGTGGCGCCCATCGTTAGCGTAGTA AGGTGCGACATGGGGCCAGTTAGCCTGCCCTATATCCCTTGCACACGTTCAATAAGAGG TTTTTAAATTAGGATGCCGACCCCATCATTGGTAACTGTATGTTCATAGATATTTCTTC AGCTGACACGCAAGGGTCAACAATAATTTCTACTATCACCCCCGCTGAACGACTGTCTTT CTTAGATTCGCGTCCTAACGTAGTGAGGGCCGAGTCATATCATAGATCAGGCATGAGAA CACACGAGTTGTAAACAACTTGATTGCTATACTGTAGCTACCGCAAGGATCTCCTACAT ATCTGGATCCGAGTCAGAAATACGAGTTAATGCAAATTTACGTAGACCGGTGAAAACAC AGACCGTAGTCAGAAGTGTGGCGCGCCTATTCGTACCGAACCGGTGGAGTATACAGAATT AGGAGCTCGGTCCCCAATGCACGCCAAAAAAGGAATAAAGTATTCAAACTGCGCATGGT CTATTATCCATCCGAACGTTGAACCTACTTCCTCGGCTTATGCTGTCCTCAACAGTATC ACTAAGTTATCCAGATCAAGGTTTGAACGGACTCGTATGACATGTGTGACTGAACCCGG CTGTTTCAAGGCCTCTGCTTTGGTATCACTCAATATATTCAGACCAGACAAGTGGCAAA CTAGGTATTCACGCAACCGTCGTAACATGCACTAAGGATAACTAGCGCCAGGGGGGGCAT AAAGACTACCCTATGGATTCCTTGGAGCGGGGACAATGCAGACCGGTTACGACACAATT GGTATTATTAGCAAGACAATAAAGGACATTGCACAGAGACTTATTAGAATTCAACAAAC GTGTTGGGTCGGGCAAGTCCCCGAAGCTCGGCCAAAAGATTCGCCATGGAACCGTCTGG

Market Trends in Economics

PageRank in Graphs 2 3 5 4 7 6 8

Equilibrium State 1:4/13 2:2/13 3: 2/13 4: 1/13 5:1/13 6: 1/13 7:1/13 8:1/13

Markov Chain

A finite Markov Chain has a set of states S and a finite matrix M

$$S = \{Clear, Rain, Snow\}$$

$$M = \begin{pmatrix} .5 & .3 & .2 \\ .5 & .4 & .1 \\ .2 & .1 & .7 \end{pmatrix}$$

Markov Chain

Given a Markov Chain and an initial state, all subsequent states can be represented either as **a series of random states** or a transition probability.

Markov Chain

Given a Markov Chain and an initial state, all subsequent states can be represented either as a series of random states or a **transition probability.**

$$M_0 = (.4 \ .3 \ .3)$$

$$M_1 = (.41 \ .27 \ .32)$$

$$M_2 = (.404 \quad .263 \quad .333)$$

 $M_3 = (.401 \quad .259 \quad .340)$

Markov Assumption

The probability of the next state depends only on our current state

Markov Assumption

Probability of state x_k depends only on previous state x_{k-1}

Ex: Let $x = \{C, R, C, R, R\}$

$$P(x) = P(x_k, x_{k-1}, \dots, x_1)$$

$$= P(x_k | x_{k-1}, \dots, x_1) P(x_{k-1}, \dots, x_1)$$

 $= P(x_k | x_{k-1}, \dots, x_1) P(x_{k-1} | x_{k-2}, \dots, x_1) \dots P(x_2 | x_1) P(x_1)$

 $P(x) \approx$

Given a set of sequences, we can construct a model of transitions

P(A | A) = # times AA occurs / # times AX occurs P(C | A) = # times AC occurs / # times AX occurs P(G | A) = # times AG occurs / # times AX occurs P(T | A) = # times AT occurs / # times AX occurs P(A | C) = # times CA occurs / # times CX occurs where X is any base (etc)

Example by Ben Langmead

Given a set of sequences, we can construct a model of transitions

Example by Ben Langmead

>>> ins_conds, _ = markov_chain_from_dinucs(samp) >>> print(ins conds) A [[0.19152248, 0.27252589, 0.39998803, 0.1359636], 0.19778547], [0.18921984, 0.35832388, 0.25467081, **X**i-1 [0.17322219, 0.33142737, 0.35571338, 0.13963706], G [0.09509721, 0.33836493] 0.37567927, 0.19085859]] С Α G Xi x = GATC $P(x) = P(x_4 | x_3) P(x_3 | x_2) P(x_2 | x_1) P(x_1)$ P(x) = P(C | T) P(T | A) P(A | G) P(G) = 0.33836493 * = 0.001992* 0.1359636 0.17322219 * Example by Ben Langmead 0.25

We can use this same approach to predict a *label* in our sequences as well

CpG island: part of the genome where CG occurs particularly frequently

Example by Ben Langmead

To predict a *label* of a sequencing region, make a Markov chain for both!

Example by Ben Langmead

	<pre>>>> cpg_conds, _ = markov_chain_from_dinucs(samp_cpg)</pre>			
	<pre>>>> print(cpg_c</pre>	onds)		
T P	[[0.19152248,	0.27252589,	0.39998803,	0.1359636],
	[0.18921984,	0.35832388,	0.25467081,	0.19778547],
	[0.17322219,	0.33142737,	0.35571338,	0.13963706],
1 1	[0.09509721,	0.33836493,	0.37567927,	0.19085859]]
_	<pre>>>> default_conds, _ = markov_chain_from_dinucs(samp_de T A >>> print(default_conds)</pre>			
T P				
Default C	[[0.33804066,	0.17971034,	0.23104207,	0.25120694],
	[0.37777025,	0.25612117,	0.03987225,	0.32623633],
ר 1	[0.30257815,	0.20326794,	0.24910719,	0.24504672],
	[0.21790184,	0.20942905,	0.2642385 ,	0.3084306]]
	<pre>>>> print(np.log2(cpg_conds) - np.log2(def_conds))</pre>			f_conds))
Log ratio	[[-0.87536356,	0.59419041,	0.81181564,	-0.85527103],
	[-0.98532149,	0.49570561,	2.64256972,	-0.7126391],
	[-0.79486196,	0.68874785,	0.51821792,	-0.79549511],
1 1	[-1.22085697,	0.73036913,	0.48119354,	-0.69736839]]

A

С

Т

G

x = GATC

 $P(x) = P(x_4 | x_3) P(x_3 | x_2) P(x_2 | x_1) P(x_1)$ P(x) = P(C | T) P(T | A) P(A | G) P(G) = 0.73036913 + = -0.919763-0.85527103 + -0.79486196

Example by Ben Langmead

Drew 1,000 100-mers from inside CpG islands and another 1,000 from outside, and calculated S(x) for all

Markov Chain Matrix

If I'm working at time 0, what is probability that I'm working at time *t*?

Claim:
$$Pr(X_t = v | X_0 = u) = M^t[u, v]$$

Markov Chain Matrix Claim: $Pr(X_t = v | X_0 = u) = M^t[u, v]$

Base Case:

T=1:

T=2:

Game Work Clean $M = \begin{pmatrix} .4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix}$

Markov Chain Matrix

Claim:
$$Pr(X_t = v | X_0 = u) = M^t[u, v]$$

Induction:

Assume $Pr(X_{t-1} = v | X_0 = u) = M^{t-1}[u, v].$ Show holds for $Pr(X_t = w | X_0 = u) = M^t[u, w]$

Markov Chain Matrix What happens as $t \to \infty$? $M = \begin{pmatrix} .4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix} \qquad M^3 = \begin{pmatrix} .238 & .492 & .270 \\ .307 & .402 & .291 \\ .335 & .450 & .215 \end{pmatrix}$ $M^{10} = \begin{pmatrix} .2940 & .4413 & .2648 \\ .2942 & .4411 & .2648 \\ .2942 & .4413 & .2648 \end{pmatrix}$ $M^{60} = \begin{pmatrix} .2941 & .4412 & .2647 \\ .2941 & .4412 & .2647 \\ .2941 & .4412 & .2647 \end{pmatrix}$

Markov Chain Stationary Distribution

A probability vector π is called a **stationary distribution** for a Markov Chain if it satisfies the stationary equation: $\pi = \pi M$

$$M = \begin{pmatrix} .4 & .6 & 0 \\ .1 & .6 & .3 \\ .5 & 0 & .5 \end{pmatrix} \qquad \begin{aligned} \pi[W] &= .4\pi[W] + .1\pi[G] + .5\pi[C] \\ \pi[S] &= .6\pi[W] + .6\pi[G] + 0\pi[C] \\ \pi[E] &= 0\pi[W] + .3\pi[G] + .5\pi[C] \end{aligned}$$

Markov Chain Stationary Distribution

Stationary distributions can be calculated using the system of equation (and that all probabilities sum to 1). **But not every Markov Chain has a** steady state (and some have infinitely many)!

Markov Chain Monte Carlo

There are ways to prove whether a Markov Chain has a stationary distribution, but several algorithms exist that approximate!

Gibbs Sampling:

Randomly assign values to a probability vector $\pi = (\theta_1, \theta_2, \dots, \theta_d)$.

Repeatedly:

Pick a random $1 \le i \le d$

Randomly update value $\theta_i | \theta_1, \ldots, \theta_{i-1}, \theta_{i+1}, \ldots, \theta_d$

Markov Chain Monte Carlo

There are ways to prove whether a Markov Chain has a stationary distribution, but several algorithms exist that approximate!

Gibbs Sampling:

Randomly assign values to a probability vector $\pi = (\theta_1, \theta_2, \dots, \theta_d)$.

Repeatedly:

Pick a random $1 \le i \le d$

Randomly update value θ_i based on $\theta_1, \ldots, \theta_{i-1}, \theta_{i+1}, \ldots, \theta_d$

Hidden Markov Models

In the real world, we often don't know the underlying markov chain!

Instead, we have observations that can be used to predict our current state.

Ex: Repeated coin flips but *sometimes* I cheat and use a fixed coin.

Hidden Markov Model

Unobserved States

Observed Emissions