CS 225
Data Structures

November 10 – Graph Traversals
G Carl Evans
Graphs

To study all of these structures:
1. A common vocabulary
2. Graph implementations
3. Graph traversals
4. Graph algorithms
Traversal:

Objective: Visit every vertex and every edge in the graph.

Purpose: Search for interesting sub-structures in the graph.

We’ve seen traversal beforebut it’s different:

- Ordered
- Obvious Start
Traversal: BFS
Traversal: BFS

<table>
<thead>
<tr>
<th>v</th>
<th>d</th>
<th>P</th>
<th>Adjacent Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Traversal: BFS

<table>
<thead>
<tr>
<th>v</th>
<th>d</th>
<th>P</th>
<th>Adjacent Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>-</td>
<td>C B D</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>A</td>
<td>A C E</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>A</td>
<td>B A D E F</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>A</td>
<td>A C F H</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>C</td>
<td>B C G</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>C</td>
<td>C D G</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>E</td>
<td>E F H</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>D</td>
<td>D G</td>
</tr>
</tbody>
</table>

G H F E D B C A
BFS(G):
Input: Graph, G
Output: A labeling of the edges on G as discovery and cross edges

discovery
foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)

cross
foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)

discovery
discovery
foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 BFS(G, v)

BFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
 v = q.dequeue()
 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 q.enqueue(w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, CROSS)
BFS Analysis

Q: Does our implementation handle disjoint graphs? If so, what code handles this?
 • *How do we use this to count components?*

Q: Does our implementation detect a cycle?
 • *How do we update our code to detect a cycle?*

Q: What is the running time?
BFS(G):
 Input: Graph, G
 Output: A labeling of the edges on G as discovery and cross edges
 foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)
 foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)
 foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 BFS(G, v)

BFS(G, v):
 Queue q
 setLabel(v, VISITED)
 q.enqueue(v)
 while !q.empty():
 v = q.dequeue()
 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 q.enqueue(w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, CROSS)
Running time of BFS

While-loop at :19?

For-loop at :21?

<table>
<thead>
<tr>
<th>v</th>
<th>d</th>
<th>P</th>
<th>Adjacent Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>-</td>
<td>C B D</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>A</td>
<td>A C E</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>A</td>
<td>B A D E F</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>A</td>
<td>A C F H</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>C</td>
<td>B C G</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>C</td>
<td>C D G</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>E</td>
<td>E F H</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>D</td>
<td>D G</td>
</tr>
</tbody>
</table>
BFS Observations

Q: What is a shortest path from A to H?

Q: What is a shortest path from E to H?

Q: How does a cross edge relate to d?

Q: What structure is made from discovery edges?
BFS Observations

Obs. 1: BFS can be used to count components.

Obs. 2: BFS can be used to detect cycles.

Obs. 3: In BFS, d provides the shortest distance to every vertex.

Obs. 4: In BFS, the endpoints of a cross edge never differ in distance, d, by more than 1:

$$|d(u) - d(v)| = 1$$
Traversal: DFS
BFS(G):
 Input: Graph, G
 Output: A labeling of the edges on G as discovery and cross edges

 foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)
 foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)
 foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 BFS(G, v)

BFS(G, v):
 Queue q
 setLabel(v, VISITED)
 q.enqueue(v)

 while !q.empty():
 v = q.dequeue()
 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 q.enqueue(w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, CROSS)
DFS(G):

Input: Graph, G
Output: A labeling of the edges on G as discovery and back edges

foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 DFS(G, v)

DFS(G, v):

Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
 v = q.dequeue()

 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 DFS(G, w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, BACK)
Traversal: DFS
Traversal: DFS
BFS(G):
 Input: Graph, G
 Output: A labeling of the edges on G as discovery and cross edges
 foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)
 foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)
 foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 BFS(G, v)

BFS(G, v):
 Queue q
 setLabel(v, VISITED)
 q.enqueue(v)
 while !q.empty():
 v = q.dequeue()
 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 q.enqueue(w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, CROSS)
DFS(G):
Input: Graph, G
Output: A labeling of the edges on G as discovery and back edges

tforeach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)

tforeach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)

tforeach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 DFS(G, v)

DFS(G, v):
 Queue q
 setLabel(v, VISITED)
 q.enqueue(v)
 while !q.empty():
 v = q.dequeue()
 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 DFS(G, w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, BACK)
Running time of DFS

Labeling:
• Vertex:

• Edge:

Queries:
• Vertex:

• Edge:
Minimum Spanning Tree Algorithms

Input: Connected, undirected graph G with edge weights (unconstrained, but must be additive)

Output: A graph G' with the following properties:
- G' is a spanning graph of G
- G' is a tree (connected, acyclic)
- G' has a minimal total weight among all spanning trees
Kruskal’s Algorithm
Kruskal’s Algorithm

(A, D)
(E, H)
(F, G)
(A, B)
(B, D)
(G, E)
(G, H)
(E, C)
(C, H)
(E, F)
(F, C)
(D, E)
(B, C)
(C, D)
(A, F)
(D, F)
Kruskal’s Algorithm

KruskalMST(G):
1. DisjointSets forest
2. foreach (Vertex v : G):
 3. forest.makeSet(v)
4. PriorityQueue Q // min edge weight
5. foreach (Edge e : G):
 6. Q.insert(e)
7. Graph T = (V, {})
8. while |T.edges()| < n-1:
7. Vertex (u, v) = Q.removeMin()
9. if forest.find(u) == forest.find(v):
10. T.addEdge(u, v)
11. forest.union(forest.find(u),
12. forest.find(v))
13. return T
Kruskal’s Algorithm

<table>
<thead>
<tr>
<th>Priority Queue:</th>
<th>Heap</th>
<th>Sorted Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:7-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Each removeMin</td>
<td>:13</td>
<td></td>
</tr>
</tbody>
</table>

Priority Queue:
- Heap
- Sorted Array

Building: 7-9
Each removeMin: 13

KruskalMST(G):
1. DisjointSets forest
2. foreach (Vertex v : G):
3. forest.makeSet(v)
4. PriorityQueue Q // min edge weight
5. foreach (Edge e : G):
6. Q.insert(e)
7. Graph T = (V, {})
8. while |T.edges()| < n-1:
9. Vertex (u, v) = Q.removeMin()
10. if forest.find(u) == forest.find(v):
11. T.addEdge(u, v)
12. forest.union(forest.find(u),
13. forest.find(v))
14. return T

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Kruskal’s Algorithm

<table>
<thead>
<tr>
<th>Priority Queue:</th>
<th>Total Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heap</td>
<td></td>
</tr>
<tr>
<td>Sorted Array</td>
<td></td>
</tr>
</tbody>
</table>

KruskalMST(G):

1. DisjointSets forest
2. foreach (Vertex v : G):
 3. forest.makeSet(v)

4. PriorityQueue Q // min edge weight
5. foreach (Edge e : G):
 6. Q.insert(e)

7. Graph T = (V, {})
8. while |T.edges()| < n-1:
 9. Vertex (u, v) = Q.removeMin()
10. if forest.find(u) == forest.find(v):
 11. T.addEdge(u, v)
 12. forest.union(forest.find(u),
 13. forest.find(v))
14. return T