Collision Handling: Separate Chaining

\[S = \{ 16, 8, 4, 13, 29, 11, 22 \} \quad |S| = n \]

\[h(k) = k \mod 7 \]

\[|\text{Array}| = N \]

(Example of open hashing)
Collision Handling: Probe-based Hashing

\[S = \{16, 8, 4, 13, 29, 11, 22\} \quad |S| = n \]

\[h(k) = k \% 7 \quad |\text{Array}| = N \]

(Example of closed hashing)
Collision Handling: Linear Probing

$S = \{ 16, 8, 4, 13, 29, 11, 22 \}$ \hspace{1cm} $|S| = n$

$h(k) = k \% 7$ \hspace{1cm} $|\text{Array}| = N$

Try $h(k) = (k + 0) \% 7$, if full...
Try $h(k) = (k + 1) \% 7$, if full...
Try $h(k) = (k + 2) \% 7$, if full...
Try ...

(Example of closed hashing)
A Problem w/ Linear Probing

Primary clustering:

Description:

Remedy:
Collision Handling: Double hashing

\[S = \{ 16, 8, 4, 13, 29, 11, 22 \} \quad |S| = n \]

\[h(k) = k \mod 7 \quad |\text{Array}| = N \]

Try \(h(k) = (k + 0 \times h_2(k)) \mod 7 \), if full...
Try \(h(k) = (k + 1 \times h_2(k)) \mod 7 \), if full...
Try \(h(k) = (k + 2 \times h_2(k)) \mod 7 \), if full...
Try ...

\[h(k, i) = (h_1(k) + i \times h_2(k)) \mod 7 \]
Running Times

The expected number of probes for find(key) under SUHA

Linear Probing:
- Successful: $\frac{1}{2}(1 + 1/(1-\alpha))$
- Unsuccessful: $\frac{1}{2}(1 + 1/(1-\alpha))^2$

Double Hashing:
- Successful: $1/\alpha \times \ln(1/(1-\alpha))$
- Unsuccessful: $1/(1-\alpha)$

Separate Chaining:
- Successful: $1 + \alpha/2$
- Unsuccessful: $1 + \alpha$

(Don’t memorize these equations, no need.)

Instead, observe:

- As α increases:
- If α is constant:
Running Times

The expected number of probes for find(key) under SUHA

Linear Probing:
- Successful: $\frac{1}{2} \left(1 + \frac{1}{1-\alpha}\right)$
- Unsuccessful: $\frac{1}{2} \left(1 + \frac{1}{1-\alpha}\right)^2$

Double Hashing:
- Successful: $\frac{1}{\alpha} \ln\left(\frac{1}{1-\alpha}\right)$
- Unsuccessful: $\frac{1}{1-\alpha}$
ReHashing

What if the array fills?
Which collision resolution strategy is better?

- Big Records:

- Structure Speed:

What structure do hash tables replace?

What constraint exists on hashing that doesn’t exist with BSTs?

Why talk about BSTs at all?
Running Times

<table>
<thead>
<tr>
<th></th>
<th>Hash Table</th>
<th>AVL</th>
<th>Linked List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find</td>
<td>Amortized:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Worst Case:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insert</td>
<td>Amortized:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Worst Case:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Space</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
std data structures

std::map
std data structures

std::map

::operator[]
::insert
::erase

::lower_bound(key) ➔ Iterator to first element ≤ key
::upper_bound(key) ➔ Iterator to first element > key
std data structures

std::unordered_map
 ::operator[]
 ::insert
 ::erase

 ::lower_bound(key) → Iterator to first element ≤ key
 ::upper_bound(key) → Iterator to first element > key
std data structures

std::unordered_map
 ::operator[]
 ::insert
 ::erase

 ::lower_bound(key) ➔ Iterator to first element ≤ key
 ::upper_bound(key) ➔ Iterator to first element > key

 ::load_factor()
 ::max_load_factor(ml) ➔ Sets the max load factor
Secret, Mystery Data Structure

ADT:
- insert
- remove
- isEmpty