
CS 225
Data Structures

Oct. 18 – BTree Analysis
G Carl Evans

BTree Analysis
The height of the BTree determines maximum number of
____________ possible in search data.

…and the height of the structure is: ______________.

Therefore: The number of seeks is no more than __________.

…suppose we want to prove this!

BTree Analysis
In our AVL Analysis, we saw finding an upper bound on the
height (given n) is the same as finding a lower bound on the
nodes (given h).

We want to find a relationship for BTrees between the
number of keys (n) and the height (h).

BTree Analysis
Strategy:
We will first count the number of nodes, level by level.

Then, we will add the minimum number of keys per node (n).

The minimum number of nodes will tell us the largest possible
height (h), allowing us to find an upper-bound on height.

BTree Analysis
The minimum number of nodes for a BTree of order m at
each level:

root:

level 1:

level 2:

level 3:
…
level h:

BTree Analysis
The total number of nodes is the sum of all of the levels:

BTree Analysis
The total number of keys:

BTree Analysis
The smallest total number of keys is:

So an inequality about n, the total number of keys:

Solving for h, since h is the number of seek operations:

BTree Analysis
Given m=101, a tree of height h=4 has:

Minimum Keys:

Maximum Keys:

Range-based Searches
Balanced BSTs are useful structures for range-based and
nearest-neighbor searches.

Q: Consider points in 1D: p = {p1, p2, …, pn}.
…what points fall in [11, 42]?

Ex:
3 6 11 33 41 44 55

Range-based Searches

6

3 11

33

44

41

3 6 11 33 41 44

55

Q: Consider points in 1D: p = {p1, p2, …, pn}.
…what points fall in [11, 42]?

Range-based Searches

6

3 11

33

44

41

3 6 11 33 41 44

55

Running Time

6

3 11

33

44

41

3 6 11 33 41 44

55

Range-based Searches
Consider points in 2D: p = {p1, p2, …, pn}.

Q: What points are in the rectangle:
[(x1, y1), (x2, y2)]?

Q: What is the nearest point to (x1, y1)?

p1

p2

p4

p3

p7

p5 p6

Range-based Searches
Consider points in 2D: p = {p1, p2, …, pn}.

Space divisions:

p1

p2

p4

p3

p7

p5 p6

Range-based Searches

p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

kD-Trees

p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

kD-Trees

p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

Hashing

Hashing
Goals:
We want to define a keyspace, a (mathematical)
description of the keys for a set of data.

…use a function to map the keyspace into a small set of
integers.

Hashing
Locker Number Name

103

92

330

46

124

Hashing

Hash function

…

A Hash Table based Dictionary

A Hash Table consists of three things:
1.

2.

3.

Dictionary<KeyType, ValueType> d;
d[k] = v;

1
2

Client Code:

A Perfect Hash Function

(Angrave, CS 241)
(Beckman, CS 421)
(Challon, CS 125)
(Davis, CS 101)
(Evans, CS 225)
(Fagen-Ulmschneider, CS 107)
(Gunter, CS 422)
(Herman, CS 233)

Hash function

Key Value

A Perfect Hash Function

Hash function

Key Value

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Keyspace:
Rolling 5 dice!

