CS 225

Data Structures

October 11 — AVL Analysis

G Carl Evans

O
SN

olololNo
o

AVL Tree Analysis

We know: insert, remove and find runs in:

We will argue that: h is

AVL Tree Analysis
Definition of big-O:

...0r, with pictures:

A

h, height

B>
n, number of nodes

AVL Tree Analysis

A

h, height

Ll | >
/ n, number of nodes

*The height of the tree, f(n), will always be less than
¢ x g(n) for all values where n > k.

AVL Tree Analysis

>

h, height
n, number of nodes

LI | > >
{ n, number of nodes h, height

AVL Tree Analysis

>

h, height
n, number of nodes

\

LI | > >
/ n, number of nodes h, height

*The number of nodes in the tree, f(h), will always
be greater than ¢ x g'*(h) for all values where n > k.

Plan of Action

Since our goal is to find the lower bound on n given h, we
can begin by defining a function given h which describes
the smallest number of nodes in an AVL tree of height h:

Simplify the Recurrence
N(h)=1+N(h-1)+ N(h-2)

State a Theorem
Theorem: An AVL tree of height h has at least

Proof:
|. Consider an AVL tree and let h denote its height.

II. Case:

An AVL tree of height has at least nodes.

Prove a Theorem

I1l. Case:

An AVL tree of height has atleast nodes.

Prove a Theorem
By an Inductive Hypothesis (IH):

We will show that:

An AVL tree of height ~ hasatleast nodes.

Prove a Theorem

V. Using a proof by induction, we have shown that:

...and inverting:

Summary of Balanced BST

Red-Black Trees
- Max height: 2 * Ig(n)
- Constant number of rotations on insert, remove, and find

AVL Trees
- Max height: 1.44 * Ig(n)
- Rotations:

Summary of Balanced BST

Pros:
- Running Time:

- Improvement Over:

- Great for specific applications:

Summary of Balanced BST

Cons:
- Running Time:

- In-memory Requirement:

Red-Black Trees in C++

C++ provides us a balanced BST as part of the standard library:
std: :map<K, V> map;

Red-Black Trees in C++
V & std: :map<K, V>::operator[] (const K &)

Red-Black Trees in C++
V & std: :map<K, V>::operator[] (const K &)

std: :map<K, V>::erase(const K &)

Red-Black Trees in C++

iterator std: :map<K, V>::lower bound(const K &);
iterator std: :map<K, V>::upper bound(const K &);

Iterators

Why do we care?

DFS dfs(...);
for (ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it) {

std: :cout << (*it) << std::endl;
}

w_» W N

Iterators

Why do we care?

DFS dfs(...);
for (ImageTraversal::Iterator it = dfs.begin(); it !'= dfs.end(); ++it) {

std: :cout << (*it) << std::endl;

B WN R

}

DFS dfs(...);
for (const Point & p : dfs) {
std::cout << p << std::endl;

}

B WN R

Iterators

Why do we care?

1| DFS dfs(...);

2 | for (ImageTraversal::Iterator it = dfs.begin(); it '= dfs.end(); ++it) {
3 std: :cout << (*it) << std::endl;

4}

1| DFS dfs(...);

2| for (const Point & p : dfs) {

3 std: :cout << p << std::endl;

4}

ImageTraversal & traversal = /* ... */;
for (const Point & p : traversal) {
std::cout << p << std::endl;

}

B WN R

Every Data Structure So Far

Unsorted Sorted Unsorted Sorted Binary Tree | BST AVL
Array Array List List

Find

Insert

Remove

Traverse

