CS/Z\ #37: MSTs: Kruskal + Prim’s Algorithm
2 5] November 15, 2021 - G Carl Evans

Kruskal’s Algorithm

Pseudocode for Kruskal’s MST Algorithm

1 | KruskalMST (G) :

2 DisjointSets forest

3 foreach (Vertex v : G):

4 forest.makeSet (v)

5

6 PriorityQueue Q // min edge weight
7 foreach (Edge e : G):

8 Q.insert (e)

9

10 Graph T = (V, {})

11

12 while |T.edges()| < n-1:

13 Vertex (u, v) = Q.removeMin ()

14 if forest.find(u) '= forest.find(v):
15 T.addEdge (u, v)

16 forest.union(forest.find(u),

17 forest.find(v))
18

19 return T

Reflections
Why would we prefer a Heap?

Why would be prefer a Sorted Array?

Kruskal’s Running Time Analysis
We have multiple choices on which underlying data structure to use to
build the Priority Queue used in Kruskal’s Algorithm:

Priority Queue

Implementations: | Heap Sorted Array

Building
:6-8

Each removeMin
:13

Based on our algorithm choice:

Priority Queue

Implementation: | Total Running Time

Heap

Sorted Array

Partition Property
Consider an arbitrary partition of the vertices on G into two subsets U

and V.
U

Let e be an edge of
minimum weight across
the partition.

Then e is part of some
minimum spanning tree.

Proofin CS 374!

Partition Property Algorithm

®_

7 = 1 |s

16 @v8’®~;~19__é>

Prim’s Minimum Spanning Tree Algorithm

Running Time of MST Algorithms

Kruskal’s Algorithm:

Prim’s Algorithm:

Q: What must be true about the connectivity of a graph when running
an MST algorithm?

...what does this imply about the relationship between n and m?

Kruskal’s MST Prim’s MST

Q: Suppose we built a new heap that optimized the decrease-key
operation, where decreasing the value of a key in a heap updates the
heap in amortized constant time, or O(1)*. How does that change
Prim’s Algorithm runtime?

(8)
T 15
2 |
— 5/ ‘@\J
a) [13|
17 |11
) — 8 -
16 ®——@
9
12
®
Pseudocode for Prim’s MST Algorithm
1l | PrimMST (G, s):
2 Input: G, Graph;
3 s, vertex in G, starting vertex of algorithm
4 Output: T, a minimum spanning tree (MST) of G
5
6 foreach (Vertex v : G):
7 d[v] = +inf
8 plv] = NULL
9 d[s] =
10
11 PriorityQueue Q // min distance, defined by d[v]
12 Q.buildHeap (G.vertices())
13 Graph T // "labeled set"
14
15 repeat n times:
16 Vertex m = Q.removeMin ()
17 T.add (m)
18 foreach (Vertex v : neighbors of m not in T):
19 if cost(v, m) < d[v]:
20 d[v] = cost(v, m)
21 pPlv]l = m
22
23 return T
Adj. Matrix Adj. List
Heap

Unsorted Array

Final big-O Running Times of classical MST algorithms:

Kruskal’s MST Prim’s MST

CS 225 — Things To Be Doing:

1. mp_mazes due today!

If your final project has not been approved get it revised.

3. Daily POTDs are ongoing for +1 point /problem but pausing over
break

i

