Cs 2 #35: DFS and Minimum Spanning Trees (MST) T Modifying BFS to create DFS
2 5 November 12, 2021 - G Carl Evans 2 Input: Graph, G
3 Output: A labeling of the edges on
Graph Traversal BFS 4 G as discovery and cross edges
- 5
. — 6 foreach (Vertex v : G.vertices()):
Big Ideas: Utility of a BFS Traversal 7 setLabel (v, UNEXPLORED)
. 8 foreach (Edge e : G.edges()):
Obs. 1: Traversals can be used to count components. 5 cotiabel (o, UNEXPLORED)
Obs. 2: Traversals can be used to detect cycles. 10 | foreach (Vertex v : G.vertices()):
Obs. 3: In BFS, d provides the shortest distance to every P e ane,y) T UNExPLORED:
vertex. 13
Obs. 4: In BFS, the endpoints of a cross edge never differ in 15 | Tonene n
distance, d, by more than 1: |d(u) - d(v)| =1 16 | setLabel (v, VISITED)
17 g.enqueue (V)
18
19 while !q.empty() :
20 v = q.dequeue ()
DFS Graph Traversal @— —_— @ 21 foreach (Vertex w : G.adjacent(v)):
. I 22 if getlLabel (w) == UNEXPLORED:
Idea: Traverse deep into the [23 setLabel (v, w, DISCOVERY)
graph quickly, visiting more | (© @ g g setLabel (v(:,)VISITED)
. . | gq.enqueue (W
distant nodes before neighbors. ‘J (H) 26 elseif getlLabel (v, w) == UNEXPLORED:
[@ 27 setLabel (v, w, CROSS)

Two types of edges: ® (e

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

A Spanning Tree on a connected graph G is a subgraph, G’, such
that:

1. Every vertex is Gisin G’ and

2. G’ is connected with the minimum number of edges

This construction will always create a new graph that is a
(connected, acyclic graph) that spans G.

A Minimum Spanning Tree is a spanning tree with the minimal
total edge weights among all spanning trees.

e Every edge must have a weight
o The weights are unconstrained, except they must be
additive (eg: can be negative, can be non-integers)
e Output of a MST algorithm produces G’
o G’is aspanning graph of G
o G’isatree

G’ has a minimal total weight among all spanning trees. There may be
multiple minimum spanning trees, but they will have the same total
weight.

Pseudocode for Kruskal’s MST Algorithm

1 | KruskalMST (G) :

2 DisjointSets forest

3 foreach (Vertex v : G):

4 forest.makeSet (v)

5

6 PriorityQueue Q // min edge weight
7 foreach (Edge e : G):

8 Q.insert (e)

9
10 Graph T = (V, {})
11
12 while |T.edges()| < n-1:
13 Vertex (u, v) = Q.removeMin ()
14 if forest.find(u) == forest.find(v):
15 T.addEdge (u, v)
16 forest.union(forest.find(u),
17 forest.find(v))
18
19 return T

Kruskal’s Algorithm

(A, D)
(E, H)
(F, G)
(8, D)
(G, E)
(G, H)
(E, Q)
(C, H)
(E, F)
(F, C)
(D, E)
(8, C)
(C, D)
(A, F)
(D, F)

CS 225 — Things To Be Doing:

1. lab_dict due Sunday
2. mp_mazes due Monday
3. Daily POTDs are ongoing for +1 point /problem

