Graph Traversal – BFS

Big Ideas: Utility of a BFS Traversal

Obs. 1: Traversals can be used to count components.

Obs. 2: Traversals can be used to detect cycles.

Obs. 3: In BFS, \(d\) provides the shortest distance to every vertex.

Obs. 4: In BFS, the endpoints of a cross edge never differ in distance, \(d\), by more than 1: \(|d(u) - d(v)| = 1\)

DFS Graph Traversal

Idea: Traverse deep into the graph quickly, visiting more distant nodes before neighbors.

Two types of edges:
-
-

Modifying BFS to create DFS

```python
BFS(G):
    Input: Graph, G
    Output: A labeling of the edges on G as discovery and cross edges
    foreach (Vertex v : G.vertices()):
        setLabel(v, UNEXPLORED)
    foreach (Edge e : G.edges()):
        setLabel(e, UNEXPLORED)
    foreach (Vertex v :
        G.vertices()):
        if getLabel(v) == UNEXPLORED:
            BFS(G, v)
BFS(G, v):
    Queue q
    setLabel(v, VISITED)
    q.enqueue(v)
    while !q.empty():
        v = q.dequeue()
        foreach (Vertex w : G.adjacent(v)):
            if getLabel(w) == UNEXPLORED:
                setLabel(v, w, DISCOVERY)
                setLabel(w, VISITED)
                q.enqueue(w)
            elseif getLabel(v, w) == UNEXPLORED:
                setLabel(v, w, CROSS)
```

Minimum Spanning Tree

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0
A **Spanning Tree** on a connected graph \(G \) is a subgraph, \(G' \), such that:

1. Every vertex is in \(G \) is in \(G' \) and
2. \(G' \) is connected with the minimum number of edges

This construction will always create a new graph that is a __________ (connected, acyclic graph) that spans \(G \).

A **Minimum Spanning Tree** is a spanning tree with the **minimal total edge weights** among all spanning trees.

- Every edge must have a weight
 - The weights are unconstrained, except they must be additive (eg: can be negative, can be non-integers)
- Output of a MST algorithm produces \(G' \):
 - \(G' \) is a spanning graph of \(G \)
 - \(G' \) is a tree

\(G' \) has a minimal total weight among all spanning trees. There may be multiple minimum spanning trees, but they will have the same total weight.

Pseudocode for Kruskal’s MST Algorithm

```
KruskalMST(G):
    DisjointSets forest
    foreach (Vertex v : G):
        forest.makeSet(v)
    PriorityQueue Q   // min edge weight
    foreach (Edge e : G):
        Q.insert(e)
    Graph T = (V, {})
    while |T.edges()| < n-1:
        Vertex (u, v) = Q.removeMin()
        if forest.find(u) == forest.find(v):
            T.addEdge(u, v)
            forest.union( forest.find(u),
                         forest.find(v) )
    return T
```

CS 225 – Things To Be Doing:

1. lab_dict due Sunday
2. mp_mazes due Monday
3. Daily POTDs are ongoing for +1 point /problem