

#33: Graph Vocabulary + Implementation
November 3, 2021 · G Carl Evans

A Review of Major Data Structures so Far

Array-based List/Pointer-based
- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
 - Hashing
 - Heaps
 - Priority Queues
 - UpTrees
 - Disjoint Sets

- Singly Linked List
- Doubly Linked List
- Skip Lists
- Trees
 - BTree
 - Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree

Motivation:
Graphs are awesome data structures that allow us to represent an
enormous range of problems. To study these problems, we need:

1. A common vocabulary to talk about graphs
2. Implementation(s) of a graph
3. Traversals on graphs
4. Algorithms on graphs

Graph Vocabulary
Consider a graph G with vertices V and edges E, G=(V,E).

Incident Edges:
 I(v) = { (x, v) in E }

Degree(v): |I|

Adjacent Vertices:
 A(v) = { x : (x, v) in E }

Path(G2): Sequence of vertices
connected by edges

Cycle(G1): Path with a common begin and end vertex containing at
least three vertices.

Simple Graph(G): A graph with no self loops or multi-edges.

Subgraph(G): G’ = (V’, E’):
 V’ ∈ V, E’ ∈ E, and (u, v) ∈ E à u ∈ V’, v ∈ V’

Graphs that we will study this semester include:
 Complete subgraph(G)
 Connected subgraph(G)
 Connected component(G)
 Acyclic subgraph(G)
 Spanning tree(G)

Size and Running Times
Running times are often reported by n, the number of vertices, but
often depend on m, the number of edges.

For arbitrary graphs, the minimum
number of edges given a graph that is:

 Not Connected:

 Minimally Connected*:

The maximum number of edges given a graph that is:

 Simple:

 Not Simple:

The relationship between the degree of the graph and the edges:

Graph ADT

Data Functions
1. Vertices

2. Edges

3. Some data structure
maintaining the
structure between
vertices and edges.

insertVertex(K key);
insertEdge(Vertex v1, Vertex v2,
 K key);

removeVertex(Vertex v);
removeEdge(Vertex v1, Vertex v2);

incidentEdges(Vertex v);
areAdjacent(Vertex v1, Vertex v2);

origin(Edge e);
destination(Edge e);

Graph Implementation #1: Edge List

Vert. Edges

u
v
w
z

 a
 b
 c
 d

Data Structures:

 Vertex Collection:

 Edge Collection:

Operations on an Edge List implementation:
 insertVertex(K key):
 - What needs to be done?

 removeVertex(Vertex v):
 - What needs to be done?

 incidentEdges(Vertex v):
 - What needs to be done?

 areAdjacent(Vertex v1, Vertex v2):
 - Can this be faster than G.incidentEdges(v1).contains(v2)?

 insertEdge(Vertex v1, Vertex v2, K key):
 - What needs to be done?

Graph Implementation #2: Adjacency Matrix

Vert. Edges Adj. Matrix

u
v
w
z

 a
 b
 c
 d

 u v w z
u
v
w
z

CS 225 – Things To Be Doing:

1. mp_mazes out now EC due Monday Nov. 8
2. Final Project teams being contacted now.
3. Daily POTDs are ongoing!

