CS/Z\ #31: Disjoint Sets
2 5/ November 1, 2021 - G Carl Evans

Disjoint Sets
Let R be an equivalence relation. We represent R as disjoint sets
e Each element exists in exactly one set.
e Every set is an equitant representation.
o Mathematically: 4 € [0]zr 2 8 € [0]r
o Programmatically: find(4) == find(8)

Building Disjoint Sets:
e Maintain a collection S = {so, S1, ... Sk}
» Each set has a representative member
void makeSet(const T & t);
void union(const T & k1, const T & k2);
T & find(const T & k);

2>

o014

[o] [1] [2] [3] [4] [5] [6] vdl (8]

[9]

Operation: find(k)

Operation: union(ki, k2)
Implementation #2:
» Continue to use an array where the index is the key
* The value of the array is:
» -1, if we have found the representative element

+ The index of the parent, if we haven’t found the rep.

- element
259 36
t t t t
5) (7) 4) 3)
/\ ’ 4N o
o) (8) /
9 2) —

[o] [1] [2] [3] [4] [5] [6] vdl (8]

[9]

Implementation — DisjointSets::find

DisjointSets.cpp (partial)

int DisjointSets::find(int i) {
if (s[i] < 0) { return i; }
else { return _find(s[i]); }

}

S W

What is the running time of £ind?

What is the ideal UpTree?

Implementation — DisjointSets::union

DisjointSets.cpp (partial)

void DisjointSets::union(int rl, int r2) {

S W R

}

How do we want to union the two UpTrees?

Building a Smart Union Function

t
SN
A

=
o

The implementation of this visual model is the following:

6 6 6 8 -1 | 10 7 -1 4 4 4

[o] [1] [2] [3] [4] (5] (6] [71 [8] (9] [10]

[11]

What are possible strategies to employ when building a “smart
union”?

Smart Union Strategy #1:
Idea: Keep the height of the tree as small as possible!

Metadata at Root:

After union(4, 7):

How do we improve this?

DisjointSets.cpp (partial)

6 6 6 8 10 7 4 7 4 | 5
[o] [1] [2] [3] [4] (5] [6] [71 (81 [o] | [10] | [11]
Smart Union Strategy #2:
Idea: Minimize the number of nodes that increase in height.
(Observe that the tree we union have all their nodes gain in height.)
Metadata at Root:
After union(4, 7):
6 6 6 8 10 | 7 7 7 | 415

[o] [1] [2] [3] [4] (5] (6] [71 [8] (9] [10]

[11]

Smart Union Implementation:

DisjointSets.cpp (partial)

void DisjointSets: :unionBySize (int rootl, int root2) {
int newSize = arr_[rootl] + arr_[root2];

if (arr_[rootl] < arr_[root2]) {

arr [root2] = rootl; arr [rootl] = newSize;
} else {
arr [rootl] = root2; arr [root2] = newSize;

}
}

WoOoJonUulbdWNPRL

1 | int DisjointSets::find(int i) {
2 if (arr_[i] < 0) { return i; }
3 else { return _find(arr_[i]); }
411}
DisjointSets.cpp (partial)
1 | void DisjointSets::unionBySize (int rootl, int root2) {
2 int newSize = arr_[rootl] + arr_[root2];
3
4 // If arr_[rootl] is less than (more negative), it is the
5 // larger set; we union the smaller set, root2, with rootl.
6 if (arr_[rootl] < arr_[root2]) {
7 arr_[root2] = rootl;
8 arr_[rootl] = newSize;
9 }
10 // Otherwise, do the opposite:
11 else {
12 arr_[rootl] = root2;
13 arr_ [root2] = newSize;
14 }
15 | }
Running Time:

Worst case running time of find(k):
Worst case running time of union(ri, r2), given roots:
New function: “Iterated Log”:

log*(n) :=

Overall running time:
o Atotal of m union/find operation runs in:

CS 225 — Things To Be Doing:

1. mp_mosaics due today
2. final project repos and teams coming soon.
3. Daily POTDs are ongoing!

