CS/Z\ #29: Heap Operations
2 5] October 29, 2021 - G Carl Evans

A Heap Data Structure

(specifically a minHeap in this example, as the minimum element is at the root)

Heap Operation:
removeMin / heapifyDown
insert /heapifyUp

Q: How do we construct a heap given data?

Ideas

1)

2)

3)

Running Time?
Theorem: The running time of buildHeap on array of size n is:

Strategy:

Define S(h):
Let S(h) denote the sum of the heights of all nodes in a complete tree
of height h.

S(o) =

SQ) =

S(h) =

Proof of S(h) by Induction:

Finally, finding the running time:

Disjoint Sets
Let R be an equivalence relation. We represent R as disjoint sets
e Each element exists in exactly one set.
e Every set is an equitant representation.
o Mathematically: 4 € [0]r 2 8 € [0]r
o Programmatically: find(4) == find(8)

Building Disjoint Sets:
e Maintain a collection S = {so, Si, ... Sk}
» Each set has a representative member
void makeSet(const T & t);
void union(const T & k1, const T & k2);
T & find(const T & k);

[o] [1] [2] [3] [4] [5] [6] vdl (8]

[9]

Operation: find(k)

Operation: union(ki, k2)
Implementation #2:
» Continue to use an array where the index is the key
* The value of the array is:
+ -1, if we have found the representative element

+ The index of the parent, if we haven’t found the rep.

element
t t t t
5) 7)) 4) 3
/\ * 7N I

[o] [1] [2] [3] [4] [5] [6] vdl (8]

[9]

Implementation — DisjointSets::find

DisjointSets.cpp (partial)

w Wb

}

int DisjointSets::find(int i) {

if (s[i] < 0) { return i; }
else { return _find(s[i]); }

What is the running time of £ind?

What is the ideal UpTree?

Implementation — DisjointSets::union

DisjointSets.cpp (partial)

o whRr

}

void DisjointSets::union(int rl, int r2) {

How do we want to union the two UpTrees?

CS 225 — Things To Be Doing:

1.
2.

3.

mp_mosaics due date: Monday, November 1
lab_hash is due Sunday, October 31
Daily POTDs are ongoing!

