BTree Motivation
Big-O assumes uniform time for all operations, but this isn’t always true.

However, seeking data from the cloud may take 100ms+.
...an O(lg(n)) AVL tree no longer looks great:

Consider Instagram profile data:

<table>
<thead>
<tr>
<th>How many profiles?</th>
<th>How much data /profile?</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVL Tree</td>
<td>BTree</td>
</tr>
<tr>
<td>Tree Height</td>
<td></td>
</tr>
</tbody>
</table>

BTree Motivations
Knowing that we have long seek times for data, we want to build a data structure with two (related) properties:

1.

2.

BTree Insert, using m=5

...when a BTree node reaches m keys:

Great interactive visualization of BTrees:
https://www.cs.usfca.edu/~galles/visualization/BTree.html
BTree Properties
For a BTree of order \(m \):
1. All keys within a node are ordered.
2. All leaves contain no more than \(m-1 \) nodes.
3. All internal nodes have exactly one more key than children.
4. Root nodes can be a leaf or have \([2, m]\) children.
5. All non-root, internal nodes have \([\lceil m/2 \rceil, m]\) children.
6. All leaves are on the same level.

Example BTree

What properties do we know about this BTree?

BTree Search

BTree Analysis
The height of the BTree determines maximum number of possible in search data.

...and the height of our structure:

Therefore, the number of seeks is no more than: __________.

...suppose we want to prove this!

BTree Analysis
In our AVL Analysis, we saw finding an upper bound on the height (given \(n \)) is the same as finding a lower bound on the nodes (given \(h \)).

Goal: We want to find a relationship for BTrees between the number of keys (\(n \)) and the height (\(h \)).

CS 225 – Things To Be Doing:
1. Programming Exam 2 reservations open in CBTF
2. Mp_traversal due next Monday (Oct. 18)
3. lab_avl due Sunday
4. Daily POTDs are ongoing!