

#20: AVL Analysis
October 11, 2021 · G Carl Evans

AVL Running Times

 AVL Tree
find

insert

remove

Motivation:
Big-O is defined as:

Let f(n) describe the height of an AVL tree in terms of the number of
nodes in the tree (n). Visually, we can represent the big-O relation:

f(n) ≤ c × g(n): Provides an
upper bound:

The height of the tree, f(n), will
always be less than c × g(n) for
all values where n > k.

f-1(h) ≥ c × g-1(h): Provides a
lower bound:

The number of nodes in the tree,
f-1(h), will always be greater
than c × g-1(h) for all values
where n > k.

Plan of Action:
Goal: Find a function that defines the lower bound on n given h.

Given the goal, we begin by defining a function that describes the
smallest number of nodes in an AVL of height h:

Theorem:
An AVL tree of height h has at least _____________________.

I. Consider an AVL tree and let h denote its height.

II. Case: ________________

III. Case: _________________

Inductive hypothesis (IH):

Proving our IH:

V. Using a proof by induction, we have shown that:

...and by inverting our finding:

Summary of Balanced BSTs:

Advantages Disadvantages

Using a Red-Black Tree in C++
C++ provides us a balanced BST as part of the standard library:
 std::map<K, V> map;

The map implements a dictionary ADT. Primary means of access is
through the overloaded operator[]:
 V & std::map<K, V>::operator[](const K &)
 This function can be used for both insert and find!

Removing an element:
 void std::map<K, V>::erase(const K &);

Range-based searching:
 iterator std::map<K, V>::lower_bound(const K &);
 iterator std::map<K, V>::upper_bound(const K &);

Iterators and MP Traversal

With a traversal you can use the for-each syntax

1
2
3
4

DFS dfs(...);
for (const Point & p : dfs) {
 std::cout << p << std::endl;
}

The exact code you might use will have a generic ImageTraversal:

1
2
3
4

ImageTraversal & traversal = /* ... */;
for (const Point & p : traversal) {
 std::cout << p << std::endl;
}

Running Time of Every Data Structure So Far:

 Unsorted
Array

Sorted
Array

Unsorted
List

Sorted
List

Find

Insert

Remove

Traverse

 Binary Tree BST AVL
Find

Insert

Remove

Traverse

CS 225 – Things To Be Doing:

1. mp_traversals extra credit submission ongoing – due today!
2. Daily POTDs are ongoing!

