Removing an element from a BST:

_remove(40)
_remove(25)
_remove(10)
_remove(13)

One-child Remove	Two-child remove

BST Analysis:
Every operation we have studied on a BST depends on:

...what is this in terms of the amount of data, \(n \)?

BST – Simple Proofs

Q: Given a height \(h \), what is the maximum number of nodes (\(n \)) in a valid BST of height \(h \)? Provide an outline of a proof.

Q: Given a height \(h \), what is the minimum number of nodes (\(n \)) in a valid BST of height \(h \)? Provide an outline of a proof.

Final BST Analysis
For every height-based algorithm on a BST:

Lower Bound:

Upper Bound:

Why use a BST over a linked list?
Q: How does our data determine the height?

1 3 2 4 5 7 6 vs. 4 2 3 6 7 1 5

Q: How many different ways are there to insert data into a BST?

Q: What is the average height of every arrangement?

...what is the intuition here?

<table>
<thead>
<tr>
<th>operation</th>
<th>BST Avg. Case</th>
<th>BST Worst Case</th>
<th>Sorted Array</th>
<th>Sorted List</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>delete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>traverse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Height Balance on BST

What tree makes you happier?

We define the **height balance** (b) of a BST to be:

We define a BST tree T to be **height balanced** if:

CS 225 – Things To Be Doing:

1. Mp_lists due today
2. Honors section starts today
3. Daily POTDs