CS/Z\ #14: Trees and our First Tree Proof
2 5| September 24, 2021 - G Carl Evans

Using an Iterator

stllist.cpp

oOdJoUld WN PR

#include <vector>
#include <string>
#include <iostream>

struct Animal {
std: :string name, food;
bool big;
Animal (std: :string name = "blob", std::string food = "you",
bool big = true)
name (name) , food(food), big(big) { /* nothing */ }
}i

int main() {
Animal g("giraffe", "leaves", true),
p("penguin", "fish", false), b("bear");
std: :vector<Animal> zoo;

zoo.push back(g) ;
zoo.push back (p) ;
zoo.push back (b) ;

// std::vector’s insertAtEnd

for (std::vector<Animal>::iterator it = zoo.begin();
it !'= zoo.end(); it++) {

std::cout << (*it) .name << " " << (*it).food << std::endl;

}

return 0;

Trees!

“The most important non-linear data structure in computer science.”
- David Knuth, The Art of Programming, Vol. 1

We will primarily talk about binary trees:

How many parents does each vertex
have?

Which vertex has the fewest
children?

Which vertex has the most
ancestors?

Which vertex has the most
descendants?

List all the vertices is b’s left
subtree.

List all the leaves in the tree.

Q: What does the above code do?

Definition: Binary Tree

A binary tree T is:

The height of a tree T is:

For-Each loop with Iterators

stllist-forEach.cpp

20
21
22

for (const Animal & animal zoo) {

std::cout << animal.name << " " << animal.food << std::endl;

}

Tree Property: Full o ; #pragma once
3 | template <typename T>
4 | class BinaryTree {
° ° 5 public:
(3 /* ... */
7 private:
8
OB ONENN
10
11
12 | };
Tree Property: Perfect ° e Trees are nothing new — they’re fancy linked o
lists:

Tree Property: Complete (c)

Theorem: If there are n data items in our representation of a binary
° 6 e ° tree, then there are NULL pointers.

Towards a Tree Implementation — Tree ADT: ° °
ADT Functionality

(English Description) Function Call ° o a o

CS 225 — Things To Be Doing:

1. mp_lists extra credit deadline Monday
2. Practice for Exam 1 open.
Tree Class 3. Daily POTDs

| BinaryTree.h

