CS/Z\ #7: Overloading
2 5] September 8, 2021 - G Carl Evans
Cubes Unite!
Consider a Tower made of three Cubes:

Tower.h

1 | #pragma once

2

3 | #include "cs225/Cube.h"

4 | using cs225: :Cube;

5

6 | class Tower {

7 public:

8 Tower (Cube c, Cube *ptr, const Cube &ref);
9 Tower (const Tower & other);
10
11 private:
12 Cube cube_;
13 Cube *ptr_;
14 const Cube &ref;
15 | };

Deep Copy via Custom Copy Constructor:
Alternatively, a custom copy constructor can perform a deep copy:

Tower.cpp

11
12
13
14
15
16
17
18
19
20
21
22
23

Tower: :Tower (const Tower & other) {
// Deep copy cube_:

// Deep copy ptr_:

// Deep copy ref :

Automatic Copy Constructor Behavior:

The behavior of the automatic copy constructor is to make a copy of

every variable. We can mimic this behavior in our Tower class:

Tower.cpp

10 | Tower: :Tower (const Tower & other) {

11 cube = other.cube ;

12 ptr_ = other.ptr_;

13 ref = other.ref ;

14 | }

10 | Tower: :Tower (const Tower & other) : cube_(other.cube),
11 ptr (other.ptr), ref (other.ref) { }

...we refer to this as a because:

Destructor

The last and final member function called in the lifecycle of a class is
the destructor.

Purpose of a destructor:

The automatic destructor:

1.

Like a constructor and copy constructor, an automatic
destructor exists only when no custom destructor is defined.

[Invoked]:

[Functionality]:

Custom Destructor:

Cube.h
5 | class Cube {
6 public:
7 Cube () ; // default ctor
8 Cube (double length); // l-param ctor
9 Cube (const Cube & other); // custom copy ctor
10 ~Cube () ; // destructor, or dtor
11

...necessary if you need to delete any heap memory!

Overloading Operators

C++ allows custom behaviors to be defined on over 20 operators:

Arithmetic + - * /& ++ --
Bitwise & | A~ L D>
Assignment =
Comparison = I= > < > <=
Logical ' ss ||
Other 1 o0 ->
General Syntax:
Adding overloaded operators to Cube:
Cube.h Cube. cpp
1 | #pragma once P VA S 74
2 40
3 | class Cube { 41
4 public: 42
" // ... 43
10 44
11 45
12 46
13 47
14 48
// ... /* ... */

The Rule of Three
If it is necessary to define any one of these three functions in a class, it
will be necessary to define all three of these functions:

1.

2.

The Rule of Zero

One Very Powerful Operator: Assignment Operator

Cube.h
|Cube & operator=(const Cube & other);
Cube. cpp
|Cube & Cube: :operator=(const Cube & other) { ... }

Functionality Table:

Copies an object

Destroys an
object

CS 225 and Rule Three/Five/Zero
In CS 225 We will:

Copy constructor

CS 225 — Things To Be Doing:

Copy Assignment
operator

1. mp_stickers out today
2. Daily POTDs every M-F for daily extra credit!

Destructor

