

#6: Lifecycle of Classes
September 3, 2021 · G Carl Evans

Contrasting the three methods:

 By Value By Pointer By Reference
Exactly what is
copied when the
function is invoked?

Does modification
of the passed in
object modify the
caller’s object?

Is there always a
valid object passed
in to the function?

Speed

Safety

Using the const keyword
1. Using const in function parameters:

joinCubes-by*-const.cpp
15 Cube joinCubes(const Cube s1, const Cube s2)
15 Cube joinCubes(const Cube *s1, const Cube *s2)
15 Cube joinCubes(const Cube &s1, const Cube &s2)

2. Using const as part of a member functions’ declaration:

Cube.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14

#pragma once

namespace cs225 {
 class Cube {
 public:
 Cube();
 Cube(double length);
 double getVolume() ;
 double getSurfaceArea() ;

 private:
 double length_;
 };
}

Cube.cpp
…
11
12
13
14
15
16
17
…

 double Cube::getVolume() {
 return length_ * length_ * length_;
 }

 double Cube::getSurfaceArea() {
 return 6 * length_ * length_;
 }

Returning from a function
Identical to passing into a function, we also have three choices on how
memory is used when returning from a function:
Return by value:

15 Cube joinCubes(const Cube &s1, const Cube &s2)

Return by reference:

15 Cube &joinCubes(const Cube &s1, const Cube &s2)

…remember: never return a reference to stack memory!
Return by pointer:

15 Cube *joinCubes(const Cube &s1, const Cube &s2)

…remember: never return a reference to stack memory!
Copy Constructor
When a non-primitive variable is passed/returned by value, a copy
must be made.
All copy constructors will:

The automatic copy constructor:

1.

2.

To define a custom copy constructor:

cs225/Cube.h
4
5
6
7
8
9
10
11
12
13
14
15

class Cube {
 public:
 Cube(); // default ctor
 Cube(double length); // 1-param ctor

 double getVolume();
 double getSurfaceArea();

 private:
 double length_;
};

Bringing Concepts Together:
How many times do our different joinCubes files call each constructor?

 By Value By Pointer By Reference

Cube()

Cube(double)

Cube(const Cube &)

Cubes Unite!
Consider a Tower made of three Cubes:

Tower.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

#pragma once

#include "cs225/Cube.h"
using cs225::Cube;

class Tower {
 public:
 Tower(Cube c, Cube *ptr, const Cube &ref);
 Tower(const Tower & other);

 private:
 Cube cube_;
 Cube *ptr_;
 const Cube &ref;
};

Automatic Copy Constructor Behavior:
The behavior of the automatic copy constructor is to make a copy of
every variable. We can mimic this behavior in our Tower class:

Tower.cpp
10
11
12
13
14

Tower::Tower(const Tower & other) {
 cube_ = other.cube_;
 ptr_ = other.ptr_;
 ref_ = other.ref_;
}

10
11

Tower::Tower(const Tower & other) : cube_(other.cube_),
 ptr_(other.ptr_), ref_(other.ref_) { }

…we refer to this as a ______________________ because:
Deep Copy via Custom Copy Constructor:

Alternatively, a custom copy constructor can perform a deep copy:

Tower.cpp
11
12
13
14
15
16
17
18
19
20
21
22
23

Tower::Tower(const Tower & other) {
 // Deep copy cube_:

 // Deep copy ptr_:

 // Deep copy ref_:

}

Destructor
The last and final member function called in the lifecycle of a class is
the destructor.

Purpose of a destructor:

The automatic destructor:

1.

2.

Custom Destructor:

cs225/Cube.h
5
6
7
8
9
10
11

class Cube {
 public:
 Cube(); // default ctor
 Cube(double length); // 1-param ctor
 Cube(const Cube & other); // custom copy ctor
 ~Cube(); // destructor, or dtor
 ...

CS 225 – Things To Be Doing:

1. lab_intro and lab_debug due Sunday@ 11:59pm
2. Mp_intro is due Tuesday@11:59pm
3. Daily POTDs every weekday for daily extra credit!

