#6: Lifecycle of Classes Cube. cpp
2 5 September 3, 2021 G Carl Evans 11 double Cube: :getVolume () {

Contrasting the three methods: 12 return length * length * length ;
13 }
: 14
By Value By Pointer By Reference = double Cube: :getSurfaceArea () (
Exactly what is 16 return 6 * length * length ;
copied when the 17 }

function is invoked?

Returning from a function

Does modification Identical to passing into a function, we also have three choices on how

of the passed in . . .
object modify the memory is used when returning from a function:
caller’s object? Return by value:

| 15 | cube joinCubes (const Cube &sl, const Cube &s2) |

Is there always a

valid object passed
in to the function? Return by reference:
| 15 | Cube &joinCubes(const Cube &sl, const Cube &s2) |
Speed) ...remember: never return a reference to stack memory!
Return by pointer:
| 15 [Cube *joinCubes (const Cube &sl, const Cube &s2) |
Safety ...remember: never return a reference to stack memory!
Using the const keyword Copy Constructor

When a non-primitive variable is passed/returned by value, a copy
must be made.
All copy constructors will:

1. Using const in function parameters:

joinCubes-by*-const.cpp

15 | Cube joinCubes(const Cube sl, const Cube s2) .
15 | Cube joinCubes (const Cube *sl, const Cube *s2) The automatic copy constructor:
15 | Cube joinCubes (const Cube &sl, const Cube &s2) 1.
2. Using const as part of a member functions’ declaration: 2.
Cube.h .
1 | #pragma once To define a custom copy constructor:
2
3 | namespace cs225 { cs225/Cube.h
4 class Cube { 4| class C.:ube {
5 public: 5 public:
6 Cube () ; 6 Cube () ; // default ctor
7 Cube(d<,>uble length) ; 7 Cube (double length); // l-param ctor
8 double getVolume () ; 58;
9 doubl tSurfaceA ;
10 ouble getSurfaceArea() 10 double getVolume () ;
11 private: 11 double getSurfaceArea();
12 double length ; iz ,
13 Vi - 13 private:
14 |} ! 14 double length_;
15 | };

Bringing Concepts Together:
How many times do our different joinCubes files call each constructor?

By Value | By Pointer | By Reference

Cube ()

Cube (double)

Cube (const Cube &)

Alternatively, a custom copy constructor can perform a deep copy:

Tower.cpp

11l | Tower: :Tower (const Tower & other) {
12 // Deep copy cube_:

13
14
15
16 // Deep copy ptr_:
17
18
19
20 // Deep copy ref :
21
22
23 | }

Cubes Unite!
Consider a Tower made of three Cubes:
Tower.h
1 | #pragma once
2
3 | #include "cs225/Cube.h"
4 | using cs225: :Cube;
5
6 | class Tower {
7 public:
8 Tower (Cube c, Cube *ptr, const Cube &ref);
9 Tower (const Tower & other);
10
11 private:
12 Cube cube_;
13 Cube *ptr_;
14 const Cube &ref;
15 | };

Automatic Copy Constructor Behavior:
The behavior of the automatic copy constructor is to make a copy of
every variable. We can mimic this behavior in our Tower class:

Tower.cpp

10 | Tower: :Tower (const Tower & other) {

11 cube = other.cube_;

12 ptr_ = other.ptr_;

13 ref = other.ref ;

14 | }

10 | Tower: :Tower (const Tower & other) : cube_(other.cube),
11 ptr (other.ptr), ref (other.ref) { }

..we refer to this as a because:

Deep Copy via Custom Copy Constructor:

Destructor
The last and final member function called in the lifecycle of a class is
the destructor.

Purpose of a destructor:

The automatic destructor:
1.

2.

Custom Destructor:

cs225/Cube.h

5 | class Cube {

6 public:

7 Cube () ; // default ctor

8 Cube (double length); // l-param ctor

9 Cube (const Cube & other); // custom copy ctor
10 ~Cube () ; // destructor, or dtor

11 e

CS 225 — Things To Be Doing:

1. lab_intro and lab_debug due Sunday@ 11:59pm
2. Mp_intro is due Tuesday@11:59pm
3. Daily POTDs every weekday for daily extra credit!

