Cs,2 | #3: Memory
2 5 August 27,2021 G Carl Evans

Puzzle #1: How do we fix our first program?

puzzle.cpp w/ above custom constructor

8 cs225: :Cube c;

9 cout << "Volume: " << c.getVolume() << endl;

main.cpp
4 | int main() {
5 cs225: :Cube c;
6 std: :cout << "Address storing ‘c’:" << &c << std::endl;
7
8 cs225: :Cube *ptr = &c;
9 std::cout << "Addr. storing ptr: "<< &ptr << std::endl;
10 std::cout << "Contents of ptr: "<< ptr << std::endl;
11
12 return O;
13 | }

...run this yourself: run make puzzle and ./puzzle in the lecture source code.

Solution #1:

Solution #2:

The beauty of programming is both solutions work! There’s no one right
answer, both have advantages and disadvantages!

Pointers and References
Often, we will have direct access to our object:

| | Cube s1; // A variable of type Cube

Indirection Operators:

Occasionally, we have a reference or pointer to our data:

Cube & rl = sl; // A reference variable of type Cube
Cube * pl; // A pointer that points to a Cube

Pointers

Unlike reference variables, which alias another variable’s memory,
pointers are variables with their own memory. Pointers store the

memory address of the contents they’re “pointing to”.

Three things to remember on pointers:
1.

2.

&V
*v
v_> Ox££££00£0
Stack MemOl'y: 0xEEE£00e8
Oxff££00e0
Oxf£££00d48
0x££££00d0
examplel.cpp
1 | int main() {
2 int a;
3 int b = -3;
4 int ¢ = 12345;
5
6 int *p = &b;
7
8 return 0O;
91}
Location

Value Type
0x££££00£0 >

Name

Oxff££00e8 >

Oxff££00e0 >

Oxf£££0048 >

Oxf£££0040 >

example2.cpp

Puzzle: What happens here?

3 | int main() {

4 cs225: :Cube c;

5 cs225::Cube *p = &c;
6

7 return 0;

8 |}

Location Value Type Name
Oxf£££00£0 >

0xff££00e8 >

0xf£££00e0 >

0xf£££00d48 >

0xf£££00d40 >

Stack Frames

All variables (including parameters to the function) that are part of a
function are part of that function’s stack frame. A stack frame:

1.
2.
stackframe.cpp

1 | int hello() { 6 | int main() {
2 int a = 100; 7 int a;
3 return a; 8 int b = -3;
4 |} 9 int ¢ = hello();
5 10 int d = 42;

11

12 return 0O;

13 | }
Location

Value Type Name

Oxff££00£0 >

Oxfff£f00e8 >

O0xff££00e0 >

Oxff££0048 >

Oxf£££00d40 >

puzzle.cpp
4 | Cube *CreateCube() {
5 Cube c(20) ;
6 return &c;
7|}
8
9 | int main() {
10 Cube *c = CreateCube () ;
11 double r = c->getVolume () ;
12 double v = c->getSurfaceArea();
13 return 0O;
14 | }
Heap Memory:

As programmers, we can use heap memory in cases where the lifecycle
of the variable exceeds the lifecycle of the function.

1.

The only way to create heap memory is with the use of the
new keyword. Using new will:
[]

The only way to free heap memory is with the use of the
delete keyword. Using delete will:

Memory is never automatically reclaimed, even if it goes out of
scope. Any memory lost, but not freed, is considered to be
“leaked memory”.

CS 225: TTBD =» lab_intro and mp_intro ongoing

