
CS 225
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October 16 – AVL Applications
G Carl Evans



AVL Tree Analysis
We know: insert, remove and find runs in: __________.

We will argue that: h is _________.



AVL Tree Analysis

•The number of nodes in the tree, f-1(h), will always 
be greater than c × g-1(h) for all values where n > k.
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Plan of Action
Since our goal is to find the lower bound on n given h, we 
can begin by defining a function given h which describes 
the smallest number of nodes in an AVL tree of height h:



Simplify the Recurrence
N(h) = 1 + N(h - 1) + N(h - 2)



State a Theorem
Theorem: An AVL tree of height h has at least __________.

Proof:
I. Consider an AVL tree and let h denote its height.

II. Case: ______________

An AVL tree of height ____ has at least ____ nodes.



Prove a Theorem
III. Case: ______________

An AVL tree of height ____ has at least ____ nodes.



Prove a Theorem
IV. Case: ______________
By an Inductive Hypothesis (IH):

We will show that:

An AVL tree of height ____ has at least ____ nodes.            



Prove a Theorem
V. Using a proof by induction, we have shown that:

…and inverting:



AVL Runtime Proof
On Friday, we proved an upper-bound on the height of an 
AVL tree is 2 × lg(n) or O( lg(n) ):

N(h) := Minimum # of nodes in an AVL tree of height h 
N(h) = 1 + N(h-1) + N(h-2)

> 1 + 2h-1/2 + 2h-2/2

> 2 × 2h-2/2 = 2h-2/2+1 = 2h/2

Theorem #1:
Every AVL tree of height h has at least 2h/2 nodes.



AVL Runtime Proof
On Friday, we proved an upper-bound on the height of an 
AVL tree is 2 × lg(n) or O( lg(n) ):

# of nodes (n) ≥ N(h) > 2h/2

n > 2h/2

lg(n) > h/2
2 × lg(n) > h
h < 2 × lg(n)                 , for h ≥ 1

Proved: The maximum number of nodes in an AVL tree of 
height h is less than 2 × lg(n).



Summary of Balanced BST
AVL Trees
- Max height: 1.44 * lg(n)
- Rotations:



Summary of Balanced BST
AVL Trees
- Max height: 1.44 * lg(n)
- Rotations:

Zero rotations on find
One rotation on insert
O(h) == O(lg(n)) rotations on remove

Red-Black Trees
- Max height: 2 * lg(n)
- Constant number of rotations on insert (max 2), remove 

(max 3).



Why Balanced BST?



Summary of Balanced BST
Pros:
- Running Time:

- Improvement Over:

- Great for specific applications:



Summary of Balanced BST
Cons:
- Running Time:

- In-memory Requirement:



Red-Black Trees in C++
C++ provides us a balanced BST as part of the standard library:

std::map<K, V> map;



Red-Black Trees in C++
V & std::map<K, V>::operator[]( const K & )



Red-Black Trees in C++
V & std::map<K, V>::operator[]( const K & )

std::map<K, V>::erase( const K & )



Red-Black Trees in C++
iterator std::map<K, V>::lower_bound( const K & );
iterator std::map<K, V>::upper_bound( const K & );



CS 225 -- Course Update
Your grades can now be viewed on moodle
(https://learn.illinois.edu/)

We will discuss the grades for the course as a whole (ex: 
average, etc) in lecture on Wednesday.

385

https://learn.illinois.edu/my/


Iterators
Why do we care?
DFS dfs(...);
for ( ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it ) {
std::cout << (*it) << std::endl;

}
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DFS dfs(...);
for ( const Point & p : dfs ) {
std::cout << p << std::endl;

}

1
2
3
4



Iterators
Why do we care?
DFS dfs(...);
for ( ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it ) {
std::cout << (*it) << std::endl;

}
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DFS dfs(...);
for ( const Point & p : dfs ) {
std::cout << p << std::endl;

}

1
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3
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ImageTraversal & traversal = /* ... */;
for ( const Point & p : traversal ) {
std::cout << p << std::endl;

}

1
2
3
4



Every Data Structure So Far
Unsorted 
Array

Sorted 
Array

Unsorted
List

Sorted
List

Binary Tree BST AVL

Find

Insert

Remove

Traverse



Range-based Searches
Q: Consider points in 1D: p = {p1, p2, …, pn}.

…what points fall in [11, 42]?

Tree construction:



Range-based Searches
Balanced BSTs are useful structures for range-based and 
nearest-neighbor searches.

Q: Consider points in 1D: p = {p1, p2, …, pn}.
…what points fall in [11, 42]?

Ex:
3 6 11 33 41 44 55
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Range-based Searches
Q: Consider points in 1D: p = {p1, p2, …, pn}.

…what points fall in [11, 42]?

Tree construction:



Range-based Searches



Range-based Searches
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Range-based Searches
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Q: Consider points in 1D: p = {p1, p2, …, pn}.
…what points fall in [11, 42]?



Range-based Searches
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Running Time
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Range-based Searches
Q: Consider points in 1D: p = {p1, p2, …, pn}.

…what points fall in [11, 42]?

Ex:
3 6 11 33 41 44 55





Range-based Searches
Consider points in 2D: p = {p1, p2, …, pn}.

Q: What points are in the rectangle:
[  (x1, y1),  (x2, y2)  ]?

Q:  What is the nearest point to (x1, y1)?
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Range-based Searches
Consider points in 2D: p = {p1, p2, …, pn}.

Tree construction:

p1

p2

p4

p3

p7

p5 p6



Range-based Searches
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kD-Trees
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kD-Trees
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