
CS 225
Data Structures

October 16 – AVL Applications
G Carl Evans

AVL Tree Analysis
We know: insert, remove and find runs in: __________.

We will argue that: h is _________.

AVL Tree Analysis

•The number of nodes in the tree, f-1(h), will always
be greater than c × g-1(h) for all values where n > k.

n, number of nodes

h,
 h

ei
gh

t

n,
 n

um
be

r o
f n

od
es

h, height

Plan of Action
Since our goal is to find the lower bound on n given h, we
can begin by defining a function given h which describes
the smallest number of nodes in an AVL tree of height h:

Simplify the Recurrence
N(h) = 1 + N(h - 1) + N(h - 2)

State a Theorem
Theorem: An AVL tree of height h has at least __________.

Proof:
I. Consider an AVL tree and let h denote its height.

II. Case: ______________

An AVL tree of height ____ has at least ____ nodes.

Prove a Theorem
III. Case: ______________

An AVL tree of height ____ has at least ____ nodes.

Prove a Theorem
IV. Case: ______________
By an Inductive Hypothesis (IH):

We will show that:

An AVL tree of height ____ has at least ____ nodes.

Prove a Theorem
V. Using a proof by induction, we have shown that:

…and inverting:

AVL Runtime Proof
On Friday, we proved an upper-bound on the height of an
AVL tree is 2 × lg(n) or O(lg(n)):

N(h) := Minimum # of nodes in an AVL tree of height h
N(h) = 1 + N(h-1) + N(h-2)

> 1 + 2h-1/2 + 2h-2/2

> 2 × 2h-2/2 = 2h-2/2+1 = 2h/2

Theorem #1:
Every AVL tree of height h has at least 2h/2 nodes.

AVL Runtime Proof
On Friday, we proved an upper-bound on the height of an
AVL tree is 2 × lg(n) or O(lg(n)):

of nodes (n) ≥ N(h) > 2h/2

n > 2h/2

lg(n) > h/2
2 × lg(n) > h
h < 2 × lg(n) , for h ≥ 1

Proved: The maximum number of nodes in an AVL tree of
height h is less than 2 × lg(n).

Summary of Balanced BST
AVL Trees
- Max height: 1.44 * lg(n)
- Rotations:

Summary of Balanced BST
AVL Trees
- Max height: 1.44 * lg(n)
- Rotations:

Zero rotations on find
One rotation on insert
O(h) == O(lg(n)) rotations on remove

Red-Black Trees
- Max height: 2 * lg(n)
- Constant number of rotations on insert (max 2), remove

(max 3).

Why Balanced BST?

Summary of Balanced BST
Pros:
- Running Time:

- Improvement Over:

- Great for specific applications:

Summary of Balanced BST
Cons:
- Running Time:

- In-memory Requirement:

Red-Black Trees in C++
C++ provides us a balanced BST as part of the standard library:

std::map<K, V> map;

Red-Black Trees in C++
V & std::map<K, V>::operator[](const K &)

Red-Black Trees in C++
V & std::map<K, V>::operator[](const K &)

std::map<K, V>::erase(const K &)

Red-Black Trees in C++
iterator std::map<K, V>::lower_bound(const K &);
iterator std::map<K, V>::upper_bound(const K &);

CS 225 -- Course Update
Your grades can now be viewed on moodle
(https://learn.illinois.edu/)

We will discuss the grades for the course as a whole (ex:
average, etc) in lecture on Wednesday.

385

https://learn.illinois.edu/my/

Iterators
Why do we care?
DFS dfs(...);
for (ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it) {
std::cout << (*it) << std::endl;

}

1
2
3
4

Iterators
Why do we care?
DFS dfs(...);
for (ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it) {
std::cout << (*it) << std::endl;

}

1
2
3
4

DFS dfs(...);
for (const Point & p : dfs) {
std::cout << p << std::endl;

}

1
2
3
4

Iterators
Why do we care?
DFS dfs(...);
for (ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it) {
std::cout << (*it) << std::endl;

}

1
2
3
4

DFS dfs(...);
for (const Point & p : dfs) {
std::cout << p << std::endl;

}

1
2
3
4

ImageTraversal & traversal = /* ... */;
for (const Point & p : traversal) {
std::cout << p << std::endl;

}

1
2
3
4

Every Data Structure So Far
Unsorted
Array

Sorted
Array

Unsorted
List

Sorted
List

Binary Tree BST AVL

Find

Insert

Remove

Traverse

Range-based Searches
Q: Consider points in 1D: p = {p1, p2, …, pn}.

…what points fall in [11, 42]?

Tree construction:

Range-based Searches
Balanced BSTs are useful structures for range-based and
nearest-neighbor searches.

Q: Consider points in 1D: p = {p1, p2, …, pn}.
…what points fall in [11, 42]?

Ex:
3 6 11 33 41 44 55

Range-based Searches
Q: Consider points in 1D: p = {p1, p2, …, pn}.

…what points fall in [11, 42]?

Ex:
3 6 11 33 41 44 55

Range-based Searches
Q: Consider points in 1D: p = {p1, p2, …, pn}.

…what points fall in [11, 42]?

Tree construction:

Range-based Searches

Range-based Searches

6

3 11

33

44

41

3 6 11 33 41 44

55

Range-based Searches

6

3 11

33

44

41

3 6 11 33 41 44

55

Q: Consider points in 1D: p = {p1, p2, …, pn}.
…what points fall in [11, 42]?

Range-based Searches

6

3 11

33

44

41

3 6 11 33 41 44

55

Running Time

6

3 11

33

44

41

3 6 11 33 41 44

55

Range-based Searches
Q: Consider points in 1D: p = {p1, p2, …, pn}.

…what points fall in [11, 42]?

Ex:
3 6 11 33 41 44 55

Range-based Searches
Consider points in 2D: p = {p1, p2, …, pn}.

Q: What points are in the rectangle:
[(x1, y1), (x2, y2)]?

Q: What is the nearest point to (x1, y1)?

p1

p2

p4

p3

p7

p5 p6

Range-based Searches
Consider points in 2D: p = {p1, p2, …, pn}.

Tree construction:

p1

p2

p4

p3

p7

p5 p6

Range-based Searches

p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

kD-Trees

p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

kD-Trees

p1 p2 p3 p4 p5 p6

p7

p1

p2

p4

p3

p7

p5 p6

