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AVL Tree Analysis

We know: insert, remove and find runs in:

We will argue that: h is




AVL Tree Analysis

>

h, height
n, number of nodes

\

LI | > >
/ n, number of nodes h, height

*The number of nodes in the tree, f(h), will always
be greater than ¢ x g'*(h) for all values where n > k.




Plan of Action

Since our goal is to find the lower bound on n given h, we
can begin by defining a function given h which describes
the smallest number of nodes in an AVL tree of height h:



Simplify the Recurrence
N(h)=1+N(h-1)+ N(h-2)



State a Theorem
Theorem: An AVL tree of height h has at least

Proof:
|. Consider an AVL tree and let h denote its height.

II. Case:

An AVL tree of height has at least nodes.



Prove a Theorem

I1l. Case:

An AVL tree of height has atleast  nodes.



Prove a Theorem

V. Case:
By an Inductive Hypothesis (IH):

We will show that:

An AVL tree of height ~ hasatleast  nodes.



Prove a Theorem

V. Using a proof by induction, we have shown that:

...and inverting:



AVL Runtime Proof

On Friday, we proved an upper-bound on the height of an
AVL tree is 2 xIg(n) or O( Ig(n) ):

N(h) := Minimum # of nodes in an AVL tree of height h
N(h) =1 + N(h-1) + N(h-2)

>1+ 2h-1/2+2h-2/2

> 2 x 2h-2/2 = 2h-2/2+1 = Zh/Z

Theorem #1.:
Every AVL tree of height h has at least 2"/2 nodes.



AVL Runtime Proof

On Friday, we proved an upper-bound on the height of an
AVL tree is 2 xIg(n) or O( Ig(n) ):

# of nodes (n) =2 N(h) > 21/2

n > 2h/2

Ig(n) > h/2

2 xlg(n)>h

h<2xlg(n) ,forh21

Proved: The maximum number of nodes in an AVL tree of
height h is less than 2 x Ig(n).



Summary of Balanced BST

AVL Trees
- Max height: 1.44 * Ig(n)
- Rotations:



Summary of Balanced BST

AVL Trees
- Max height: 1.44 * Ig(n)
- Rotations:

Zero rotations on find
One rotation on insert
O(h) == O(lg(n)) rotations on remove

Red-Black Trees

- Max height: 2 * Ig(n)

- Constant number of rotations on insert (max 2), remove
(max 3).



Why Balanced BST?



Summary of Balanced BST

Pros:
- Running Time:

- Improvement Over:

- Great for specific applications:



Summary of Balanced BST

Cons:
- Running Time:

- In-memory Requirement:



Red-Black Trees in C++

C++ provides us a balanced BST as part of the standard library:
std: :map<K, V> map;



Red-Black Trees in C++
V & std: :map<K, V>::operator[] ( const K & )



Red-Black Trees in C++
V & std: :map<K, V>::operator[] ( const K & )

std: :map<K, V>::erase( const K & )



Red-Black Trees in C++

iterator std: :map<K, V>::lower bound( const K & );
iterator std: :map<K, V>::upper bound( const K & );



CS 225 -- Course Update

Your grades can now be viewed on moodle
(https://learn.illinois.edu/)

We will discuss the grades for the course as a whole (ex:
average, etc) in lecture on Wednesday.


https://learn.illinois.edu/my/

lterators

Why do we care?

DFS dfs(...);
for ( ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it ) {

std: :cout << (*it) << std::endl;
}

w_» W N




lterators

Why do we care?

DFS dfs(...);
for ( ImageTraversal::Iterator it = dfs.begin(); it !'= dfs.end(); ++it ) {

std: :cout << (*it) << std::endl;

B WN R

}

DFS dfs(...);
for ( const Point & p : dfs ) {
std::cout << p << std::endl;

}

B WN R




lterators

Why do we care?

1| DFS dfs(...);

2 | for ( ImageTraversal::Iterator it = dfs.begin(); it '= dfs.end(); ++it ) {
3 std: :cout << (*it) << std::endl;

4}

1| DFS dfs(...);

2| for ( const Point & p : dfs ) {

3 std: :cout << p << std::endl;

4}

ImageTraversal & traversal = /* ... */;
for ( const Point & p : traversal ) {
std::cout << p << std::endl;

}

B WN R




Every Data Structure So Far

Unsorted Sorted Unsorted Sorted Binary Tree | BST AVL
Array Array List List

Find

Insert

Remove

Traverse



Range-based Searches

Q: Consider points in 1D: p ={p1, P2, «--» Pn}-
..what points fall in [11, 42]?

Tree construction:



Range-based Searches

Balanced BSTs are useful structures for range-based and
nearest-neighbor searches.

Q: Consider points in 1D: p ={p1, P2, «--» Pn}-
..what points fall in [11, 42]?




Range-based Searches

Q: Consider points in 1D: p ={p1, P2, «--» Pn}-
..what points fall in [11, 42]?




Range-based Searches

Q: Consider points in 1D: p ={p1, P2, «--» Pn}-
..what points fall in [11, 42]?

Tree construction:



Range-based Searches




Range-based Searches




Range-based Searches

Q: Consider points in 1D: p = {p1, Py ---» Pn}-
..what points fall in [11, 42]?




Range-based Searches




Running Time




Range-based Searches

Q: Consider points in 1D: p ={p1, P2, «--» Pn}-
..what points fall in [11, 42]?







Range-based Searches

Consider points in 2D: p ={p1, P2, «--» Pn}-

Q: What points are in the rectangle:
[ (xlr yl)l (XZr yZ) ]?

Q: What is the nearest point to (x4, y4)?
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Range-based Searches
Consider points in 2D: p ={p1, P2, «--» Pn}-

Tree construction:
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Range-based Searches
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kD-Trees

Ps Ps




kD-Trees
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