CS 225

Data Structures

October 16 — AVL Applications

G Carl Evans

AVL Tree Analysis

We know: insert, remove and find runs in:

We will argue that: h is

AVL Tree Analysis

>

h, height
n, number of nodes

\

LI | > >
/ n, number of nodes h, height

*The number of nodes in the tree, f(h), will always
be greater than ¢ x g'*(h) for all values where n > k.

Plan of Action

Since our goal is to find the lower bound on n given h, we
can begin by defining a function given h which describes
the smallest number of nodes in an AVL tree of height h:

Simplify the Recurrence
N(h)=1+N(h-1)+ N(h-2)

State a Theorem
Theorem: An AVL tree of height h has at least

Proof:
|. Consider an AVL tree and let h denote its height.

II. Case:

An AVL tree of height has at least nodes.

Prove a Theorem

I1l. Case:

An AVL tree of height has atleast nodes.

Prove a Theorem

V. Case:
By an Inductive Hypothesis (IH):

We will show that:

An AVL tree of height ~ hasatleast nodes.

Prove a Theorem

V. Using a proof by induction, we have shown that:

...and inverting:

AVL Runtime Proof

On Friday, we proved an upper-bound on the height of an
AVL tree is 2 xIg(n) or O(Ig(n)):

N(h) := Minimum # of nodes in an AVL tree of height h
N(h) =1 + N(h-1) + N(h-2)

>1+ 2h-1/2+2h-2/2

> 2 x 2h-2/2 = 2h-2/2+1 = Zh/Z

Theorem #1.:
Every AVL tree of height h has at least 2"/2 nodes.

AVL Runtime Proof

On Friday, we proved an upper-bound on the height of an
AVL tree is 2 xIg(n) or O(Ig(n)):

of nodes (n) =2 N(h) > 21/2

n > 2h/2

Ig(n) > h/2

2 xlg(n)>h

h<2xlg(n) ,forh21

Proved: The maximum number of nodes in an AVL tree of
height h is less than 2 x Ig(n).

Summary of Balanced BST

AVL Trees
- Max height: 1.44 * Ig(n)
- Rotations:

Summary of Balanced BST

AVL Trees
- Max height: 1.44 * Ig(n)
- Rotations:

Zero rotations on find
One rotation on insert
O(h) == O(lg(n)) rotations on remove

Red-Black Trees

- Max height: 2 * Ig(n)

- Constant number of rotations on insert (max 2), remove
(max 3).

Why Balanced BST?

Summary of Balanced BST

Pros:
- Running Time:

- Improvement Over:

- Great for specific applications:

Summary of Balanced BST

Cons:
- Running Time:

- In-memory Requirement:

Red-Black Trees in C++

C++ provides us a balanced BST as part of the standard library:
std: :map<K, V> map;

Red-Black Trees in C++
V & std: :map<K, V>::operator[] (const K &)

Red-Black Trees in C++
V & std: :map<K, V>::operator[] (const K &)

std: :map<K, V>::erase(const K &)

Red-Black Trees in C++

iterator std: :map<K, V>::lower bound(const K &);
iterator std: :map<K, V>::upper bound(const K &);

CS 225 -- Course Update

Your grades can now be viewed on moodle
(https://learn.illinois.edu/)

We will discuss the grades for the course as a whole (ex:
average, etc) in lecture on Wednesday.

https://learn.illinois.edu/my/

lterators

Why do we care?

DFS dfs(...);
for (ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it) {

std: :cout << (*it) << std::endl;
}

w_» W N

lterators

Why do we care?

DFS dfs(...);
for (ImageTraversal::Iterator it = dfs.begin(); it !'= dfs.end(); ++it) {

std: :cout << (*it) << std::endl;

B WN R

}

DFS dfs(...);
for (const Point & p : dfs) {
std::cout << p << std::endl;

}

B WN R

lterators

Why do we care?

1| DFS dfs(...);

2 | for (ImageTraversal::Iterator it = dfs.begin(); it '= dfs.end(); ++it) {
3 std: :cout << (*it) << std::endl;

4}

1| DFS dfs(...);

2| for (const Point & p : dfs) {

3 std: :cout << p << std::endl;

4}

ImageTraversal & traversal = /* ... */;
for (const Point & p : traversal) {
std::cout << p << std::endl;

}

B WN R

Every Data Structure So Far

Unsorted Sorted Unsorted Sorted Binary Tree | BST AVL
Array Array List List

Find

Insert

Remove

Traverse

Range-based Searches

Q: Consider points in 1D: p ={p1, P2, «--» Pn}-
..what points fall in [11, 42]?

Tree construction:

Range-based Searches

Balanced BSTs are useful structures for range-based and
nearest-neighbor searches.

Q: Consider points in 1D: p ={p1, P2, «--» Pn}-
..what points fall in [11, 42]?

Range-based Searches

Q: Consider points in 1D: p ={p1, P2, «--» Pn}-
..what points fall in [11, 42]?

Range-based Searches

Q: Consider points in 1D: p ={p1, P2, «--» Pn}-
..what points fall in [11, 42]?

Tree construction:

Range-based Searches

Range-based Searches

Range-based Searches

Q: Consider points in 1D: p = {p1, Py ---» Pn}-
..what points fall in [11, 42]?

Range-based Searches

Running Time

Range-based Searches

Q: Consider points in 1D: p ={p1, P2, «--» Pn}-
..what points fall in [11, 42]?

Range-based Searches

Consider points in 2D: p ={p1, P2, «--» Pn}-

Q: What points are in the rectangle:
[(xlr yl)l (XZr yZ)]?

Q: What is the nearest point to (x4, y4)?

o
P2 o o
Ps Pe
o
P1
)
P3 ()

Range-based Searches
Consider points in 2D: p ={p1, P2, «--» Pn}-

Tree construction:

o
P2 o o
Ps Pe
o
P1
)
P3 ()

Range-based Searches

P o0
Ps p
[
P1
o
P3

]
®
)
o
o]
)
go]
ge]

kD-Trees

Ps Ps

kD-Trees

Ps

Pe

