Disjoint Sets

Key Ideas:
• Each element exists in exactly one set.
• Every set is an equitant representation.
 • Mathematically: $4 \in [0]_R \rightarrow 8 \in [0]_R$
 • Programmatically: `find(4) == find(8)`
Implementation #1

Find(k):

Union(k1, k2):
Implementation #2

- We will continue to use an array where the index is the key

- The value of the array is:
 - -1, if we have found the representative element
 - The index of the parent, if we haven’t found the rep. element

- We will call these UpTrees:
UpTrees

0 1 2 3

0 1 2 3
-1 -1 -1 -1

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3
Disjoint Sets

```plaintext
2 5 9
7
0 1 4 8
3 6

0  1  2  3  4  5  6  7  8  9
4  8  5  6  -1 -1 -1 -1  4  5
```
Disjoint Sets Find

```
int DisjointSets::find() {
    if ( s[i] < 0 ) { return i; }
    else { return _find( s[i] ); }
}
```

Running time?

What is the ideal UpTree?
Disjoint Sets Union

```cpp
void DisjointSets::union(int r1, int r2) {
}
```
Disjoint Sets – Union

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>-1</td>
<td>10</td>
<td>7</td>
<td>-1</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Disjoint Sets – Smart Union

Union by height

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td></td>
<td>10</td>
<td>7</td>
<td></td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Idea: Keep the height of the tree as small as possible.
Disjoint Sets – Smart Union

Union by height

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Union by size

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Idea: Keep the height of the tree as small as possible.

Idea: Minimize the number of nodes that increase in height.

Both guarantee the height of the tree is: ______________.
Disjoint Sets Find

```cpp
int DisjointSets::find(int i) {
    if ( s[i] < 0 ) { return i; }
    else { return _find( s[i] ); }
}

void DisjointSets::unionBySize(int root1, int root2) {
    int newSize = arr_[root1] + arr_[root2];
    // If arr_[root1] is less than (more negative), it is the larger set;
    // we union the smaller set, root2, with root1.
    if ( arr_[root1] < arr_[root2] ) {
        arr_[root2] = root1;
        arr_[root1] = newSize;
    }
    // Otherwise, do the opposite:
    else {
        arr_[root1] = root2;
        arr_[root2] = newSize;
    }
}
```
Path Compression

Diagram of a tree structure with nodes labeled from 1 to 10.
Disjoint Sets Analysis

The iterated log function:

The number of times you can take a log of a number.

\[\log^*(n) = \begin{cases}
0, & n \leq 1 \\
1 + \log^*(\log(n)), & n > 1
\end{cases} \]

What is \(\lg^*(2^{65536}) \)?
Disjoint Sets Analysis

In an Disjoint Sets implemented with smart\textit{ unions} and path compression on\textit{ find}:

Any sequence of \textbf{m union} and \textbf{find} operations result in the worse case running time of $O(\text{__________})$, where \textbf{n} is the number of items in the Disjoint Sets.