October 17 – kd-Tree and Btrees Intro
Wade Fagen-Ulmschneider
Range-based Searches

Balanced BSTs are useful structures for range-based and nearest-neighbor searches.

Q: Consider points in 1D: \(p = \{p_1, p_2, ..., p_n\} \).
 ...what points fall in \([11, 42]\)?

Ex:

\[
\begin{array}{ccccccc}
3 & 6 & 11 & 33 & 41 & 44 & 55 \\
\end{array}
\]
Q: Consider points in 1D: $p = \{p_1, p_2, ..., p_n\}$. ...what points fall in $[11, 42]$?
Range-based Searches
Running Time
Range-based Searches

Consider points in 2D: \(p = \{ p_1, p_2, \ldots, p_n \} \).

Q: What points are in the rectangle:
\[(x_1, y_1), (x_2, y_2) \]?

Q: What is the nearest point to \((x_1, y_1)\)?
Range-based Searches

Consider points in 2D: \(p = \{ p_1, p_2, ..., p_n \} \).

Space divisions:
Range-based Searches

![Diagram of range-based searches with points and a tree structure]

The diagram illustrates range-based searches with points labeled as p_1, p_2, p_3, p_4, p_5, p_6, and p_7. The tree structure represents the search process, with p_7 as the root node.
kD-Trees
kD-Trees
CS 225 – Midpoint Grade Update

CS 225 -- Midpoint Grade CDF

Students

Course Grade (of 424) w/o EC
B-Trees
B-Trees

Q: Can we always fit our data in main memory?

Q: Where else can we keep our data?

However, big-O assumes uniform time for all operations.
Vast Differences in Time

A 3GHz CPU performs 3m operations in ________.

Old Argument: “Disk Storage is Slow”
- Bleeding-edge storage is pretty fast:
 * NVMe (M.2, PCIe 3.0 x4):
- Large Disks (25 TB+) still have slow throughout:

New Argument: “The Cloud is Slow!”
AVLs on Disk
Real Application

Imagine storing driving records for everyone in the US:

How many records?

How much data in total?

How deep is the AVL tree?
BTree Motivations

Knowing that we have large seek times for data, we want to:
BTree (of order m)

Goal: Minimize the number of reads!

Build a tree that uses ________________ / node
[1 network packet]
[1 disk block]
BTree Insertion

A **BTree** of order **m** is an m-way tree:
- All keys within a node are ordered
- All leaves contain hold no more than **m-1** nodes.
BTree Insertion

When a BTree node reaches m keys:

$m=5$
BTree Recursive Insert
BTree Recursive Insert

m=3

-3 8 25 31 43 55

23 42

-3 8 25 31 43 55
BTree Visualization/Tool

https://www.cs.usfca.edu/~galles/visualization/BTree.html
Btree Properties

A **BTree** of order **m** is an m-way tree:
- All keys within a node are ordered
- All leaves contain hold no more than **m-1** nodes.

- All internal nodes have exactly one more key than children
- Root nodes can be a leaf or have **[2, m]** children.
- All non-root, internal nodes have **[ceil(m/2), m]** children.

- All leaves are on the same level
BTREE Search
BTree Search

```cpp
bool Btree::_exists(BTreeNode & node, const K & key) {
    unsigned i;
    for (i = 0; i < node.keys_ct_ && key < node.keys_[i]; i++) {} // i < node.keys_ct_ && key < node.keys_[i] && key == node.keys_[i] 
    if (i < node.keys_ct_ && key == node.keys_[i]) { // i < node.keys_ct_ && key == node.keys_[i] 
        return true;
    } else { // i < node.keys_ct_ && key == node.keys_[i] 
        BTreeNode nextChild = node._fetchChild(i);
        return _exists(nextChild, key);
    }
}
```
BTree Analysis

The height of the BTree determines maximum number of __________ possible in search data.

...and the height of the structure is: ______________.

Therefore: The number of seeks is no more than __________.

...suppose we want to prove this!
BTree Analysis

In our AVL Analysis, we saw finding an upper bound on the height (given n) is the same as finding a lower bound on the nodes (given h).

We want to find a relationship for BTrees between the number of keys (n) and the height (h).