Tree Terminology

• Find an **edge** that is not on the longest **path** in the tree. Give that edge a reasonable name. **Edge: ac**

• One of the vertices is called the **root** of the tree. Which one? **Vertex a is the root.**

• Make an “word” containing the names of the vertices that have a **parent** but no **sibling**. **No word with just bgh. 😊**

• How many parents does each vertex have?
• Which vertex has the fewest **children**?
• Which vertex has the most **ancestors**?
• Which vertex has the most **descendants**?
• List all the vertices in b’s left **subtree**.
• List all the **leaves** in the tree.
Binary Tree – Defined

A binary tree T is either:

• OR

•
Tree Property: height

\(\text{height}(T) \): length of the longest path from the root to a leaf

Given a binary tree \(T \):

\[\text{height}(T) = \]
Tree Property: full

A tree F is **full** if and only if:

1.

2.
Tree Property: perfect

A **perfect** tree P is defined in terms of the tree’s height.

Let P_h be a perfect tree of height h, and:

1.

2.
Tree Property: complete

Conceptually: A perfect tree for every level except the last, where the last level is “pushed to the left”.

Slightly more formal: For all levels k in $[0, h-1]$, k has 2^k nodes. For level h, all nodes are “pushed to the left”.
Tree Property: complete

A **complete** tree C of height h, C_h:

1. $C_{-1} = \emptyset$
2. C_h (where $h > 0$) = \{r, T_L, T_R\} and either:

 T_L is ___________ and T_R is ___________

 OR

 T_L is ___________ and T_R is ___________

Diagram:

```
  C
 / \
S   X
|   |
A   2 5
|   |
Y   2 2
|   |
Z
```
Tree Property: complete

Is every full tree complete?

If every complete tree full?
Open Office Hours
Open Office Hours

CS 225 has over 50 hours of open office hours each week, lots of time to get help!
Open Office Hours

CS 225 has **over 50 hours of open office hours each week**, lots of time to get help!

1. Understand the problem, don’t just give up.
 - “I segfaulted” is not enough. *Where? Any idea why?*
Open Office Hours

CS 225 has **over 50 hours of open office hours each week**, lots of time to get help!

2. Your topic must be specific to one function, one test case, or one exam question.
- Helps us know what to focus on before we see you!
- Helps your peers to ensure all get questions answered!
Open Office Hours

CS 225 has **over 50 hours of open office hours each week**, **lots** of time to get help!

3. Get stuck, get help – not the other way around.
- If you immediately re-add yourself, you’re setting yourself up for failure.
Open Office Hours

CS 225 has over 50 hours of open office hours each week, lots of time to get help!

4. Be awesome.
Tree ADT
Tree ADT

- **insert**, inserts an element to the tree.
- **remove**, removes an element from the tree.
- **traverse**,
#pragma once

template <class T>
class BinaryTree {
public:
 /* ... */

private:

};
Trees aren’t new:
Trees aren’t new:
How many NULLs?

Theorem: If there are n data items in our representation of a binary tree, then there are ____________ NULL pointers.
How many NULLs?

Base Cases:

n = 0:

n = 1:

n = 2:
How many NULLs?

Induction Hypothesis:
How many NULLs?

Consider an arbitrary tree T containing n data elements:
Traversals
Traversals

template<class T>
void BinaryTree<T>::__Order(TreeNode * root) {
 if (root != NULL) {
 __________________;
 ___Order(root->left);
 __________________;
 ___Order(root->right);
 __________________;
 }
}
Traversals

```cpp
template<class T>
void BinaryTree<T>::__Order(TreeNode * root)
{
    if (root != NULL) {
        ____________________;
        __Order(root->left);
        ____________________;
        __Order(root->right);
        ____________________;
    }
}
```
template<class T>
void BinaryTree<T>::__Order(TreeNode * root) {
 if (root != NULL) {
 ____________________;
 __Order(root->left);
 ____________________;
 __Order(root->right);
 }
}