From Friday:
- Graphs with a negative-weight cycle have no finite shortest path. *(We can always take the cycle one more time to get an even shorter path!)*
- Graphs with a negative-weight edge *without* a negative-weight cycle DO have a finite shortest path!
- Does Dijkstra’s algorithm find it?

Dijkstra: What if we have a minimum-weight edge, without having a negative-weight cycle?

Q: Can we transform the graph by adding $+k$ to every edge?

Dijkstra: What is the running time?

Floyd-Warshall Algorithm
Floyd-Warshall’s Algorithm is an alternative to Dijkstra in the presence of negative-weight edges (but *not* negative weight cycles).

Algorithm Design:
- **Goal:** Find the shortest path from vertex u to v.
- **Setup:** Create an $n \times n$ matrix that maintains the best known path between every pair of vertices:
 - Initialize (u, u) to 0.
 - Initialize all edges present on the graph to their edge weight.
 - Initialize all other edges to $+\infty$.

- For every vertex k, consider which of the following are shorter:
 - $\text{path}(u, v)$ - or -
 - $\text{path}(u, k) + \text{path}(k, v)$

Big Idea: __________________
- Store intermediate results to improve build towards an optimal solution.
- Example application of memorization and *dynamic programming* (DP) – more in CS 374!
Running Time:

<table>
<thead>
<tr>
<th>Pseudocode for Floyd-Warshall’s Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 FloydWarshall(G):</td>
</tr>
<tr>
<td>2 Input: G, Graph;</td>
</tr>
<tr>
<td>3 Output: d, an adjacency matrix of distances between</td>
</tr>
<tr>
<td>All vertex pairs</td>
</tr>
<tr>
<td>4 Let d be an adj. matrix (2d array) initialized to +inf</td>
</tr>
<tr>
<td>5 foreach (Vertex v : G):</td>
</tr>
<tr>
<td>6 d[v][v] = 0</td>
</tr>
<tr>
<td>7 foreach (Edge (u, v) : G):</td>
</tr>
<tr>
<td>8 d[u][v] = cost(u, v)</td>
</tr>
<tr>
<td>9 foreach (Vertex u : G):</td>
</tr>
<tr>
<td>10 foreach (Vertex v : G):</td>
</tr>
<tr>
<td>11 foreach (Vertex k : G):</td>
</tr>
<tr>
<td>12 if d[u, v] > d[u, k] + d[k, v]:</td>
</tr>
<tr>
<td>13 d[u, v] = d[u, k] + d[k, v]</td>
</tr>
<tr>
<td>14 return d</td>
</tr>
</tbody>
</table>

Overview of Graphs:

Implementations
- Edge List
- Adjacency Matrix
- Adjacency List

Traversals
- Breadth First
- Depth First

Minimum Spanning Tree (MST)
- Kruskal’s Algorithm
- Prim’s Algorithm

Shortest Path
- Dijkstra’s Algorithm (Single Source)
- Floyd-Warshall’s Algorithm (All Pairs)

Maximum Flow
- Ford-Fulkerson (DFS paths) Algorithm
- Edmonds-Karp (BFS paths) Algorithm

...and this is just the beginning. The journey continues to CS 374!

End of Semester :(

CS 225 Final Exam
- The final exam is a 3 hour CBTF exam, is a cumulative exam, and has the format of theory exam + programming exam
 - Expect ~25-30 theory questions
 - Expect ~2-3 programming problems
- Exam begins on Thursday (December 13th), last day of office hours is December 12th (no office hours once finals begin)
- In-lecture review w/ TAs on Wednesday (December 12th)

“Pre-Final” Grade Update
- As soon as possible after the MP7 deadline, I’ll provide a “Pre-Final” grade update in Compass 2g with all grades except for your final exam.

End of Semester Grade Review
- Did we miss something that impacts your final grade? I want to be absolutely sure you get the grade you earned!
- After final grades are posted, I will provide a Google Sheet that allows you to submit a Grade Review if you believe the grade review will change your final letter grade.
 - You will have the chance to justify why you received an incorrect grade and how it impacts your letter grade in the course.
 - Instructions on Piazza at the same time as that the final grades are posted.

CS 225 – Things To Be Doing:

1. MP7 due tonight (December 10); two-day grace period applies!
2. Final Exam starts Thursday, December 14