

#34: Graph Implementation
November 14 2018 · Wade Fagen-Ulmschneider

Graph Implementation #1: Edge List

Vert. Edges

u
v
w
z

 a
 b
 c
 d

Data Structures:

 Vertex Collection:

 Edge Collection:

Operations on an Edge List implementation:
 insertVertex(K key):
 - What needs to be done?

 removeVertex(Vertex v):
 - What needs to be done?

 incidentEdges(Vertex v):
 - What needs to be done?

 areAdjacent(Vertex v1, Vertex v2):
 - Can this be faster than G.incidentEdges(v1).contains(v2)?

 insertEdge(Vertex v1, Vertex v2, K key):
 - What needs to be done?

Graph Implementation #2: Adjacency Matrix

Vert. Edges Adj. Matrix

u
v
w
z

 a
 b
 c
 d

 u v w z
u
v
w
z

Data Structures:

Operations on an Adjacency Matrix implementation:
 insertVertex(K key):
 - What needs to be done?

 removeVertex(Vertex v):
 - What needs to be done?

 incidentEdges(Vertex v):
 - What needs to be done?

 areAdjacent(Vertex v1, Vertex v2):
 - Can this be faster than G.incidentEdges(v1).contains(v2)?

 insertEdge(Vertex v1, Vertex v2, K key):
 - What needs to be done?

Graph Implementation #3: Adjacency List

Vertex List Edges

u

v

w

z

a

b

c

d

Operations on an Adjacency Matrix implementation:
 insertVertex(K key):

 removeVertex(Vertex v):

 incidentEdges(Vertex v):

 areAdjacent(Vertex v1, Vertex v2):

 insertEdge(Vertex v1, Vertex v2, K key):

Running Times of Classical Graph Implementations

 Edge List Adj. Matrix Adj. List

Space n+m n2 n+m

insertVertex 1 n 1

removeVertex m n deg(v)

insertEdge 1 1 1

removeEdge 1 1 1

incidentEdges m n deg(v)

areAdjacent m 1 min(deg(v),
deg(w))

Q: If we consider implementations of simple, connected graphs, what
relationship between n and m?

- On connected graphs, is there one algorithm that underperforms the
other two implementations?

Q: Is there clearly a single best implementation?

- Optimized for fast construction:

- Optimized for areAdjacent operations:

CS 225 – Things To Be Doing:
1. Programming Exam C is different than usual schedule:

 Exam: Sunday, Dec 2 – Tuesday, Dec 4
2. lab_dict released this week; due on Tuesday, Nov. 27
3. MP6 EC+5 due tonight; final due date on Monday, Nov. 26
4. Very special POTD today!

