

#32: Disjoint Sets Finale + Graphs Intro

2 5 November 9, 2018 · Wade Fagen-Ulmschneider

Smart Union Options:

- Union by Height (root := -h 1)
- Union by Size (root := -**n**)
- Union by Rank (root := #union ops)

In <u>all</u> smart unions:

....height of UpTree: _____

How do we improve this?

DisjointSets.cpp	(partial

- 1 int DisjointSets::find(int i) {
 2 if (arr_[i] < 0) { return i; }</pre>
- 3 else { return _find(arr_[i]); }
 4 }

DisjointSets.cpp (partial)

```
1
    void DisjointSets::unionBySize(int root1, int root2) {
      int newSize = arr [root1] + arr [root2];
2
3
4
      // If arr [root1] is less than (more negative), it is the
      // larger set; we union the smaller set, root2, with root1.
5
 6
      if ( arr [root1] < arr [root2] ) {</pre>
        arr [root2] = root1;
7
8
        arr [root1] = newSize;
9
      }
10
      // Otherwise, do the opposite:
11
      else {
12
        arr [root1] = root2;
13
        arr [root2] = newSize;
14
15
```

Running Time:

11

8

7

1

2

- Worst case running time of find(k):
- Worst case running time of union(r1, r2), given roots:
- New function: "Iterated Log":

log*(n) :=

- Overall running time:
 - \circ A total of **m** union/find operation runs in:

A Review of Major Data Structures so Far

Array-based	List/Pointer-based
- Sorted Array	- Singly Linked List
- Unsorted Array	- Doubly Linked List
- Stacks	- Skip Lists
- Queues	- Trees
- Hashing	- BTree
- Heaps	- Binary Tree
- Priority Queues	- Huffman Encoding
- UpTrees	- kd-Tree
- Disjoint Sets	- AVL Tree

An Introduction to Graphs

TROILUS AND CRESSIDA

Motivation:

Graphs are awesome data structures that allow us to represent an enormous range of problems. To study these problems, we need:

- 1. A common vocabulary to talk about graphs
- Implementation(s) of a graph
 Traversals on graphs
- 4. Algorithms on graphs

CS 225 – Things To Be Doing:

- Theory Exam 3 is ongoing!
 lab_heaps due Sunday, November 11th
 MP6 released; Extra Credit +7 deadline November 12th
- **4.** Daily POTDs are ongoing!