A Heap Data Structure
(specifically a minHeap in this example, as the minimum element is at the root)

Given an index \(i \), it’s parent and children can be reached in O(1) time:
- \(\text{leftChild} := 2i \)
- \(\text{rightChild} := 2i + 1 \)
- \(\text{parent} := \text{floor}(i / 2) \)

Formally, a complete binary tree \(T \) is a minHeap if:
- \(T = {} \) or
- \(T = \{r, T_L, T_R\} \) and \(r \) is less than the roots of \(T_L, T_R \) and \(T_L, T_R \) are minHeaps

Inserting into a Heap

How do we complete this code?

Running time of insert?

Heap Operation: removeMin / heapifyDown:
Q: How do we construct a heap given data?

Theorem: The running time of buildHeap on array of size n is: ________.

Strategy:

Define S(h):
Let S(h) denote the sum of the heights of all nodes in a complete tree of height h.

\[S(0) = \]
\[S(1) = \]
\[S(h) = \]

Proof of S(h) by Induction:

Finally, finding the running time:

Running Time?

CS 225 – Things To Be Doing:

1. Theory Exam 3 starts on Thursday (topic list online, more soon!)
2. MP5 due date: Monday, November 5th
3. lab_hash is due Sunday, November 4th
4. Daily POTDs are ongoing!