Range-based Searches:
Q: Consider points in 1D: \(p = \{p_1, p_2, \ldots, p_n\} \).
...what points fall in \([11, 42]\)?

Tree Construction:

kd-TreeMotivation:
First, let's try and divide our space up:

kd-Tree Construction:
How many dimensions exist in our input space?
How do we want to “order” our dimensions?

Running Time:

Extending to k-dimensions:
Consider points in 2D: \(p = \{p_1, p_2, \ldots, p_n\} \):
...what points are inside a range (rectangle)?
...what is the nearest point to a query point \(q \)?
Motivation
Can we always fit our data in main memory?

Where else do we keep our data?

vs. CPU: 3 GHz == 3m ops / _________ * ___ cores

AVL Operations on Disk:

How deep do AVL trees get?

BTree Motivations
Knowing that we have long seek times for data, we want to build a data structure with two (related) properties:

1.
2.

BTree_m

Goal: Build a tree that uses_______________/node!
...optimize the algorithm for your platform!

A BTree of order m is an m-way tree where:
1. All keys within a node are ordered.
2. All leaves contain no more than m-1 nodes.

BTree Insert, using m=5

...when a BTree node reaches m keys:

<table>
<thead>
<tr>
<th>CS 225 – Things To Be Doing:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Programming Exam B starts next Thursday (Oct 25th)</td>
</tr>
<tr>
<td>2. MP4 extra credit ongoing (final deadline Monday, Oct. 17th)</td>
</tr>
<tr>
<td>3. lab_avl released this week; course feedback in lab this week!</td>
</tr>
<tr>
<td>4. Daily POTDs are ongoing!</td>
</tr>
</tbody>
</table>