We will primarily talk about **binary trees**:
- How many parents does each vertex have?
- Which vertex has the fewest **children**?
- Which vertex has the most **ancestors**?
- Which vertex has the most **descendants**?
- List all the vertices is b’s left **subtree**.
- List all the **leaves** in the tree.

Definition: Binary Tree

A binary tree T is:

Tree Property: Full

Tree Property: Perfect

Tree Property: Complete

Towards a Tree Implementation – Tree ADT:

<table>
<thead>
<tr>
<th>ADT Functionality (English Description)</th>
<th>Function Call</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tree Class

```cpp
#pragma once
template <typename T>
class BinaryTree {
  public: 
    /* ... */
  private:
    // ... 
};
```
Trees are nothing new – they’re fancy linked lists:

Theorem: If there are n data items in our representation of a binary tree, then there are _______ NULL pointers.

Traversals:

CS 225 – Things To Be Doing:

1. Programming Exam A is on-going (ends on Sunday!)
2. MP3 extra credit deadline is Monday!
3. lab_quacks due Sunday
4. Daily POTDs