

#8: Templates

September 14, 2018 · Wade Fagen-Ulmschneider

Assignment Operator – Self Destruction

 Programmers are sometimes not perfect Consider the
following:

assignmentOpSelf.cpp
1

2

3

4

5

6

7

#include "Cube.h"

int main() {

 cs225::Cube c(10);

 c = c;

 return 0;

}

 Ensure your assignment operator doesn’t self-destroy:

Cube.cpp
1

…

40

41

42

43

44

45

46

#include "Cube.h"

Cube& Cube::operator=(const Cube &other) {

 if (&other != this) {

 _destroy();

 _copy(other);

 }

 return *this;

}

Inheritance
In nearly all object-oriented languages (including C++), classes can be
extended to build other classes. We call the class being extended the
base class and the class inheriting the functionality the derived
class.

Shape.h Square.h
 class Shape {

 public:

 Shape();

 Shape(double length);

 double getLength() const;

 private:

 double length_;

};

 #include "Shape.h"

class Square : public Shape

{

 public:

 double getArea() const;

 private:

 // Nothing!

};

In the above code, Square is derived from the base class Shape:

 All public functionality of Shape is part of Square:

main.cpp
5

6

7

8

…

int main() {

 Square sq;

 sq.getLength(); // Returns 1, the len init’d

 // by Shape’s default ctor

 ...

 [Private Members of Shape]:

Virtual

 The virtual keyword allows us to override the behavior of a
class by its derived type.

Example:

Cube.cpp RubikCube.cpp
 Cube::print_1() {

 cout << "Cube" << endl;

}

Cube::print_2() {

 cout << "Cube" << endl;

}

virtual Cube::print_3() {

 cout << "Cube" << endl;

}

virtual Cube::print_4() {

 cout << "Cube" << endl;

}

// In .h file:

virtual Cube::print_5() = 0;

 // No print_1()

RubikCube::print_2() {

 cout << "Rubik" << endl;

}

// No print_3()

RubikCube::print_4() {

 cout << "Rubik" << endl;

}

RubikCube::print_5() {

 cout << "Rubik" << endl;

}

 Cube c; RubikCube c;

RubikCube rc;

Cube &c = rc;

c.print_1();

c.print_2();

c.print_3();

c.print_4();

c.print_5();

Polymorphism
Object-Orientated Programming (OOP) concept that a single object
may take on the type of any of its base types.

 A RubikCube may polymorph itself to a Cube

 A Cube cannot polymorph to be a RubikCube (base types
only)

Why Polymorphism? Suppose you’re managing an animal
shelter that adopts cats and dogs:

Option 1 – No Inheritance

animalShelter.cpp
1

2

3

Cat & AnimalShelter::adopt() { ... }

Dog & AnimalShelter::adopt() { ... }

...

Option 2 – Inheritance

animalShelter.cpp
1 Animal & AnimalShelter::adopt() { ... }

Pure Virtual Methods
In Cube, print_5() is a pure virtual method:

Cube.h
1 virtual Cube::print_5() = 0;

A pure virtual method does not have a definition and makes the class
and abstract class.

Abstract Class:

1. [Requirement]:

2. [Syntax]:

3. [As a result]:

Abstract Class Animal
In our animal shelter, Animal is an abstract class:

Abstract Data Types (ADT):

List ADT - Purpose Function Definition

List Implementation
What types of List do we want?

Templates in C++
Two key ideas when using templates in C++:

1.

2.

Templated Functions:

functionTemplate1.cpp
1

2

3

4

5

6

T maximum(T a, T b) {

 T result;

 result = (a > b) ? a : b;

 return result;

}

CS 225 – Things To Be Doing:

1. Theory Exam #1 is ongoing; ensure you take it!
2. MP2 due Sept. 24 (10 days), EC deadline in 3 days!
3. Lab Extra Credit Attendance in your registered lab section!
4. Daily POTDs

